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Foreword 

 
This manual provides procedures for air pollution exposure assessment within ESCAPE that 

are not covered in the overall study manual. The overall study manual specifies the 

monitoring program including site selection. The current manual starts form there and adds 

modeling issues (GIS data, modeling procedures, validation, extrapolation of exposure 

estimates back in time).  

This version replaces the August 2009 version that was used to guide the collection of GIS 

data. A track change version is available indicating the differences between this version and 

the August 2009 version. The main changes are in chapter 2-5. Experiences obtained in the 

first year GIS workshop in April 2010 were incorporated in this updated manual. 

 2



Table of contents 

 Foreword 2 

1. Introduction 5 

2. Calculation of annual average concentrations for and geocoding of the 

monitoring sites 

2.1  NOx only sites 

2.2  PM+NOx only sites 

2.3  Calculated concentrations 

2.4  Geocoding of monitoring sites 

8 

8 

9 

10 

11 

3. Collection of GIS datasets 

3.1  Central GIS datasets 

3.2  Local GIS datasets 

3.3 Area-level potential confounders for the epidemiological analysis 

12 

13 

14 

19 

4. GIS analyses 

4.1  Predictor variables for land use regression development 

4.2  Traffic exposure variables 

4.3  Explanation GIS analyses 

20 

20 

25 

25 

5. Development and validation of land use regression and other exposure 

models 

5.1  Introduction land use regression modeling   

5.2  Land use regression model development 

     5.2.1  Overall concentrations (full dataset) 

     5.2.3  Background concentrations 

5.3  Checks for regression analysis including spatial autocorrelation 

5.4  Model validation 

5.5  Summary of LUR output  

5.6  Central ESCAPE database 

5.7  Documentation of LUR models 

5.8  Other exposure assessment methods 

29 

 

29 

29 

31 

32 

33 

34 

34 

35 

35 

36 

6. Estimation of air pollution exposure at addresses of study participants 37 

7. Exposure estimation over time 

7.1  Evaluation of changes in spatial patterns and adjustment for temporal 

trends 

    7.1.1  Evaluation of changes in spatial patterns and temporal trends 

    7.1.2  Backward extrapolation of air pollution concentrations 

7.2  Exposure estimation for birth cohort studies 

39 

40 

 

40 

42 

42 

 3



7.3  Residential history and other addresses 43 

8. Additional exposure issues 

8.1  Both ESCAPE data and previous monitoring and / or modeling data 

available 

8.2  For specific study area no ESCAPE data available, but spatially resolved 

models available 

8.3  No ESCAPE data available and no spatially resolved models available 

44 

44 

 

45 

 

46 

9. Coordination 48 

10. Time planning 49 

 Appendix I: Central road network classes 50 

 Appendix II: CORINE 2000 classes 51 

 Appendix III: Possible area-level confounders for the ESCAPE project 55 

 Appendix IV: ESCAPE geocoding procedure 64 

 Appendix V: ESCAPE air pollution and GIS transfer: explanation of 

variables 

75 

 References 79 

 4



1.  Introduction 

 

The purpose of this ESCAPE exposure assessment manual is to provide a manual for all the 

steps from air pollution monitoring to exposure assessment for addresses of study 

participants. The monitoring methods and site selection has been specified in the overall study 

manual. The steps covered in the current text include: 

1. Calculation of annual average air pollution concentrations (section 2) 

2. Collection of Geographic Information System (GIS) data (Section 3) 

3. GIS analyses for the coordinates of the monitoring sites and the addresses of study 

participants (Section 4) 

4. Development of land use regression and potentially other models (Section 5) 

5. Assessment of air pollution exposure at addresses of study participants (Section 6) 

(including geocoding of addresses which is described in a separate ESCAPE 

geocoding procedure, appendix IV) 

6. Exposure estimation back in time (Section 7).  

 

For some study areas and studies there may be additional exposure issues, e.g. both ESCAPE 

data and previous local exposure data may be available, or no local exposure data at all may 

be available (Section 8). Section 9 describes the coordination activities to harmonize exposure 

assessment which is mostly performed locally. Section 10 shows a time planning. 

 

Overview of exposure assessment process 

For the geographical coordinates of the ESCAPE monitoring sites and the addresses of cohort 

members GIS data will be collected. These data will be used as potential predictor variables 

in exposure models to predict air pollution concentrations at addresses of cohort members, i.e. 

using land use regression (LUR) models. 

The GIS analyses, exposure assessment model development and exposure assessment for the 

addresses of study participants will be conducted by the groups who do the measurements 

within the study areas. If this is not feasible for logistic or scientific reasons, analyses will be 

performed centrally. The exposure groups who conduct the monitoring campaigns have 

budget to conduct the GIS analyses, to develop exposure assessment models and to estimate 

exposure for the study participants.  

Figure 1 below shows the data structure of the exposure assessment process and who is 

responsible for which step (Health WPs or Exposure groups, i.e. persons in a group that 

conduct the measurements, conduct geocoding, conduct GIS-analyses, develop LUR models 

and estimate exposure for cohort addresses). The ESCAPE Exposure Working Group will 
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provide procedures for monitoring, geocoding (which is described in a separate Geocoding 

manual), GIS data collection, GIS analyses and LUR development, and will provide 

supervision of these steps. Transfer of data has to take place when the addresses of study 

participants and/or geographical coordinates of these addresses will go from the Health WPs 

to the exposure groups for geocoding and exposure assessment. Depending on the privacy 

regulations for each study, this may introduce a privacy issue. Please discuss with the people 

from the Health WPs that are responsible for the study data whether there is a privacy issue. 

After the exposure assessment has been conducted for the geographical coordinates, the 

exposure estimates will be transferred to the Health WPs for epidemiological analyses. 

Because of the large number of study areas and studies and the diversity of these study areas 

and studies, the described procedures in this ESCAPE exposure assessment manual may not 

always exactly apply to each study (area). Questions about the procedures in the ESCAPE 

exposure assessment manual can therefore be sent to IRAS (Rob Beelen (r.m.j.beelen@uu.nl) 

and / or Gerard Hoek (g.hoek@uu.nl)). 
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Figure 1: Data structure of the exposure assessment process, and who is responsible for which 

step 
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2.  Calculation of annual average concentrations for and geocoding of 

the monitoring sites 

 

The calculation of annual average concentrations proceeds in four steps after field work and 

laboratory analysis have been completed: 

1. Reporting of analysis results (filter weights etc) by IRAS to the centers 

2. Data entry of field forms and inclusion of analysis results in Excel files prepared by 

IRAS. This is the responsibility of the local centers doing the field work 

3. Consistency checks by IRAS, resulting in a final dataset of measurements, including 

definition of average blank levels, limits of detection and precision.  

4. Calculation of annual averages for all monitoring sites. The procedures are slightly 

different for the NOx only and the PM+NOx because in the NOx only centers 

measurements are performed simultaneously for all sites. Calculation of annual 

average concentrations should be conducted by the Exposure groups based on the 

measurement data.  

 

Measurements at the ESCAPE monitoring sites will not be performed simultaneously. For 

example, PM measurements in one season are spread over 4 x 2 weeks, and for both PM and 

NOx additional measurements will be conducted if there are missing data due to loss of 

samplers etc. Therefore differences may occur due to temporal variation, which have to be 

adjusted before calculation of the annual average concentration. The adjustment has to be 

conducted using data from the ESCAPE reference site or a continuous monitoring site.  

 

In the calculations use the following rules to include individual samples: 

• They should fulfill SOP requirements for sampling time (> 67%), for flow for PM 

measurements (start and end > 8 l/min) and for analysis  

• Do not change measurements below the detection limit (do not set them to a fixed 

value) 

• Do not replace (small) negative values with zero or another fixed value 

• Do not include duplicates, as they are not available for all measurements 

 

2.1 NOx only sites 

The simple arithmetic mean of the available measurements per site is taken after adjustment 

for temporal variation using the difference between the sampling period and the annual 

average of the study period (see below). The annual average is calculated from (urban or 

rural) background station routine monitoring data for the ESCAPE study period. This 
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adjustment is applied to all samples. For sites with three valid measurements, the adjustment 

is just scaling, the difference between sites is not affected. For sites with less than three 

measurements the adjustment also limits bias related to missing samples in a high or low 

pollution sampling period. 

The adjustment will be similar to the procedure for the PM+NOx sites, with the difference that 

no ESCAPE reference site has been designated. For adjustment, data from an urban or rural 

background NOx monitor will be used. If multiple monitors are available, use all monitors that 

have at least 75% data capture,  i.e the annual average should consist of monitoring data from 

at least 75% of 365 days.  

 The adjustment procedure is as follows for NOx, NO2 and NO separately: 

- calculate the annual average for the continuous monitoring site(s) for the 12 months 

period from the start date of the ESCAPE measurements: cc(avg) 

- calculate for the continuous measurement site the difference of the measurement for each 

2-week period t in which ESCAPE measurements have been conducted (t=1 to 3 or more) 

from the annual average : dcc(t) = cc(t) – cc(avg), with : cc being the concentration at the 

routine continuous monitoring site(s)  

- subtract the difference for period t from the measurement at site i (i=1 to 40) in period t:  

ci , adjusted(t)  = ci (t) -  dcc(t) 

- Calculate the arithmetic mean of the adjusted concentrations and the standard error of the 

mean to document how well the mean is established 

- Calculate the arithmetic mean of the original concentration measurements and the 

standard error of the mean and prepare a scatterplot of these unadjusted average 

concentrations versus the adjusted concentrations including the R2 and the linear 

regression equation linking them. This is performed to document the impact of 

adjustment.  

 

For areas where no routine background monitoring data are available, another approach is 

necessary to avoid bias for sites with less than three measurements. Calculate the arithmetic 

mean concentration for each of the three sampling periods using only sites with three valid 

measurements.  The average of these three value is then used as the cc(avg) in the procedure 

above. This calculation only removes bias for sites with less than three observations, it does 

not scale to true annual averages.  

 

2.2 PM+NOx only sites 

The simple arithmetic mean of the available measurements per site is taken after adjustment 

for temporal variation using the difference between the sampling period and the annual 
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average of the study period (see below). The annual average is calculated from the ESCAPE 

reference site for the ESCAPE study period. This adjustment is applied to all samples.  

 

 The adjustment procedure is as follows for PM10, PM2.5 and absorbance separately: 

- calculate the annual average for the ESCAPE reference site for the 12 months period from 

the start data of the ESCAPE measurements: cr(avg), 

- calculate for the ESCAPE reference site the difference of the measurement for each 2-

week period t in which ESCAPE measurements have been conducted (t=1 to 12 or more) 

from the annual average dcr(t) = cr(t) – cr(avg) 

- subtract the difference for period t from the measurement at site i (i=1 to 20 / 40) in 

period t: ci , adjusted(t)  = ci (t) –  dcr(t) 

- Calculate the arithmetic mean of these adjusted concentrations and the standard error of 

the mean to document how well the mean is established 

- Calculate the arithmetic mean and the standard error of the mean of the original 

concentration measurements and prepare a scatterplot of these concentrations versus the 

adjusted concentrations including the R2 and the linear regression equation linking them. 

This is performed to document the impact of adjustment.  

 

In case of missing data at the reference site, the data have to be imputed from data from a 

routine network, provided that the correlation is sufficiently high. It is considered a waste of 

resources if the data from a complete measurement period have to be excluded. Imputation 

will be performed using regression analysis. Communicate with IRAS if you need to do this 

(g.hoek@uu.nl). A high correlation is necessary (e.g R larger than 0.70) to do this. For 

components that are not measured in the network (such as absorbance), one can include other 

pollutants such as Black Smoke or NOx. 

 

2.3  Calculated concentrations 

 

The following annual average concentrations will then be calculated for each ESCAPE 

monitoring site using the unadjusted and adjusted concentrations: 

- PM2.5 

- PM10 

- PMcoarse (PM10-PM2.5) 

- Absorption coefficient PM2.5 

- NOx, NO2 and NO 
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The adjusted concentrations will be used in the exposure assessment modeling. The standard 

error of the mean may be used in further modeling.  

 

We will further have data on elemental composition of PM2.5. These will become available 

in a later stage. We will use a selection of elements taking into account toxicity, indicator for 

sources and data quality.  

 

2.4 Geocoding of monitoring sites 

 

Rather than averaging GPS coordinates recorded at several site visits, the x and y coordinates 

of the monitoring locations will be extracted from accurate, preferably digital, maps (e.g. 

cadastral or topographical survey maps of 1:10,000 or better). Preliminary investigations into 

the GPS readings of the first year groups showed unacceptable variation at some sites of 

repeated GPS readings.    

 

Each study area will use the appropriate local coordinate system / national grid. Re-projection 

might be necessary to convert all spatial data sets (monitoring sites, GIS data sets and cohort 

address locations) into this coordinate system. For assistance please contact Kees de Hoogh at 

Imperial College (c.dehoogh@imperial.ac.uk).  
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3.  Collection of GIS datasets 

 

Potential predictor variables for exposure modeling will be derived from GIS datasets. Table 

1 lists some of the potential predictor variables that can be applied in modelling spatial 

variations in air pollution concentrations. Important predictor variables include various traffic 

representations, population density, land use, physical geography (e.g. altitude) and climate, 

but there might be other relevant area-specific predictor variables (Hoek et al., 2008). 

 

Table 1. Potential predictor variables that can be applied in land use regression modelling 
Variable Specification  Spatial scale / buffer 

size 
Traffic intensity 
nearest street 

Motor vehicles per day, if possible 
separated into light, medium-heavy and 
heavy vehicles 

NA 

Distance to nearest 
street 

Typically distance of object to centre of 
the road 

NA 

Traffic intensity 
buffers 

Motor vehicles per day, if possible 
separated into light, medium-heavy and 
heavy vehicles in buffers around the 
sampling point 

Circles with radii of  e.g. 
100m, 300m, and 500m 
around the sampling point

Height Height above ground NA 
Distance to nearby 
major road 

Typically distance of object to centre of 
the nearest major road 

Within 500 meter 

Traffic intensity on 
nearest major road 

Motor vehicles per day, if possible 
separated into light, medium-heavy and 
heavy vehicles in buffers around the 
sampling point 

NA 

Population density Population density in buffers around the 
sampling point 

Circles with radii of 
300m, 1000m and 3000m 
around the sampling point

Household density Household density in buffers around the 
sampling point 

Circles with radii of 
300m, 1000m and 3000m 
around the sampling point

Land use Land use in buffers around the sampling 
point (e.g. residential land, industry, 
urban green) 

Circles with radii of 
300m, 1000m and 3000m 
around the sampling point

Altitude If important altitude differences exist NA 
Meteorology If important meteorological differences 

exist (e.g. wind speed, wind direction, 
temperature) 

NA 

Distance to features E.g. distance to sea, major lake or 
specific source area, border crossing 

 

Coordinate variables If the study area is large there might be 
regional variation in air pollution 
concentrations. These regional 
variations may not be taken into 
account by the other variables. 

NA 

NA = not applicable 
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European wide GIS data will be centrally obtained and re-projected by Imperial College for 

each study area and provided at the April 2010 and February 2011 GIS/LUR workshops. This 

will be done in order to ensure consistency, facilitate licensing and avoid duplication of effort. 

Locally available GIS data should also be collected by each centre as not all predictor 

variables are centrally available. Local GIS data may also be better than that available in the 

central GIS data. Both the central and local GIS predictor variables will be evaluated similarly 

for exposure model development.  

 

3.1 Central GIS datasets 

 

The following data sets will be made available to partners. 

In Table 2 it is described which datasets are “Default” or “Backup” datasets. “Default” 

datasets are the central GIS datasets that can be used regardless whether similar local GIS 

data are available. “Backup” datasets are the central GIS datasets that should only be used 

when similar local GIS datasets are not available. 

 

Table 2: Available central GIS datasets. 

Central GIS dataset Default / backup 

Digital road data Backup / Default 

Land use data Default 

Population Backup 

Altitude Backup 

Below some more detailed information about the central available GIS datasets. 

 

1. Digital road data.  

These data are essential inputs to land use regression and dispersion models.  

High resolution road data was obtained by Imperial College for all countries 

represented in ESCAPE. Eurostreets version 3.1 is a 1:10,000 digital road network 

which is based on the TeleAtlas MultiNet TM. Attributes include name of street, road 

classification, route number, speed and length. The FRC road classification classes 

are described in Appendix I. Imperial College will re-project the EuroStreets data for 

each study area. It is important to note that no traffic intensity is attached to this data 

set. 

Checking for availability of local GIS road network data with traffic intensities 

attached has therefore a high priority.   
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2. Land use data.  

These data are key inputs to the land use regression models.  The data will also be 

used as the geographic base for all GIS data sets.  

CORINE land cover 2000 (CLC2000) is available from the EEA as a 1:100,000 

seamless vector database. It comprises 44 land cover classes, and has a spatial  

minimum mapping resolution of 25 hectares.  CORINE data are not available for 

Norway and Switzerland. Imperial College will re-project the CORINE data for each 

study area into the relevant coordinate system.  

We will use the land use categories as used in a recent LUR paper in the UK and 

Netherlands (Vienneau et al, 2010). The original CORINE categories will be 

used/regrouped by summation as indicated in Table 4. Appendix II describes the 

CORINE classes that will be used. 

3. Population density data  

High resolution modelled population data for ca. 2001 will be distributed by Imperial 

College (available from the INTARESE project).       

4. Altitude  

Central altitude data have not been collected but the SRTM 90m Digital Elevation 

Data is available for download from the following website: http://srtm.csi.cgiar.org/.   

Please contact Imperial College if assistance is needed in re-projecting these data for 

your study. 

 

 

3.2  Local GIS datasets 

 

Local GIS data should be collected by the local centers that do the exposure assessment 

modeling. Local data should be collected with a reasonable effort. Table 3 describes all local 

GIS datasets for which it should be evaluated whether these data are available in your study 

area (in decreasing order of priority, together with the required resolution/accuracy). Please 

indicate also if data are not available and why these data are not available (e.g. not existing, 

costs too high, not accurate enough). The Exposure Working Group will evaluate this for each 

study area. Below (page 18) guidelines are given which information the Exposure Working 

Group would like to receive from each dataset. Please collect this information and send that to 

the Exposure Working Group. 

If available, data for different years, i.e. for the current situation (because monitoring takes 

place for this time period) and for the relevant time window of exposure, should be collected. 

Retrospective information on changes in land use, road networks, traffic flows etc can be used 

to reconstruct historical trends.  
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Table 3: Local GIS datasets that should be collected in each study area, in decreasing order of 

priority, and with required accuracy / resolution 

 

Local GIS dataset Maximum resolution / accuracy 
Local road network with linked traffic intensities or 
road type 

10 meter 

Population and/or household density  100 meter 
Altitude 100 meter 
Information about height of buildings, canyon street 
and other street configuration 

10 meter 

Study area specific local data: for example, information 
about wood smoke, distance to sea/lake, distance to 
major air pollution source.* 

** 

Land use 100 meter 
Emission data 1000 meter 
Satellite data 100 meter 
* If applicable to your study area 

** Depending on the variable 

 

The local GIS are described in more detail below. 

1. Local digital road network with linked traffic intensities or road type 

As described above an Europe-wide digital road network will be centrally available. 

Although this road network is accurate, it includes only a road classification but no traffic 

intensities (for road classifications in the central road network, see Appendix I). Local 

GIS road network data with traffic intensities attached or with road type information 

should be collected. The required accuracy for the local digital road network should be 10 

meter. This should apply to road sections between intersections as well (for route finding 

databases this is not critical). A further issue is the completeness of the database, 

realistically especially for major roads. 

In some areas traffic intensities might already be linked to a local digital road network, 

while in other areas traffic intensity data are available but not linked yet to a road 

network. The collection and linkage of traffic intensities to a digital road network should 

be done locally. Collecting of the traffic intensity data and linking to the road network 

may be time consuming! Collection of traffic intensity data, especially those for 

municipal roads, is often problematic as they are only available for a small number of 

streets, and mainly on major roads, in many cities. If possible, traffic intensity data should 

be collected for different years, i.e. current data, but also years in the relevant time 

window of exposure. Preferably, traffic intensity data should be collected for different 

traffic types (light-duty, medium-duty and heavy-duty traffic). However, if this is not 
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available total traffic intensity can be used. Linkage of traffic intensity data to a digital 

road network can be done based on street section, street name or street number.   

If traffic intensity data are not available, the length of specific road types / classifications 

can be used as potential predictor variables. E.g in the UK, roads are classified as 

motorways, A-roads, B-roads. Several land use regression applications have successfully 

explored the use of the length of specific road types without traffic intensity data. For this 

the European-wide digital road network will be used because this road network is 

accurate and has a road classification (Table 4 and Appendix I). 

2. Population and household density 

Local population density data should be collected because the central available data are 

modeled and not validated. In addition to local population density data, household density 

data are also interesting to collect. Some studies successfully used household density as 

potential predictor variable for air pollution concentrations. The correlation between 

population density and household density is normally high. If possible, data should be 

collected for different years, i.e. for the current situation but also for the relevant time 

window of exposure. The required accuracy for population and household density data is 

100 meter. 

3. Altitude 

Altitude data are needed for study areas with relevant altitude differences.  If readily 

available and of better spatial resolution, local altitude data may be used.  Otherwise the 

SRTM 90m Digital Elevation Data may be used: http://srtm.csi.cgiar.org/. The required 

accuracy for altitude data is 100 meter. 

4. Information about address height, height of surrounding buildings and street 

configuration such as canyon type 

Evaluate whether GIS databases on height of surrounding buildings and location of street 

canyons or other information about street configuration (e.g. information about traffic 

speed) are available. Because air pollution concentrations have a vertical gradient with 

lower concentrations at increasing height, but with higher concentrations in canyon 

streets, this information might be useful. This will not be easy to obtain, but a reasonable 

effort should be made to obtain data. For smaller studies (for example < ~1000 subjects, 

e.g. some birth cohorts), data could be obtained manually, using the form used for 

monitoring site characterization. The importance of these variables has recently been 

illustrated in a few land use regression studies. Inclusion of these variables would be a 

contribution from ESCAPE.  

If these data are not available in a GIS, for each monitoring site it could be evaluated 

what the height is and whether it is located in a street canyon. A limitation may however 

be that all traffic sites are on ground level or first floor, so the effect of height for traffic 
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sites might be difficult to evaluate. This information can then be added to the developed 

final land use regression model and it can be evaluated whether the model improves by 

adding these data. If not, data about height and street canyon are not needed for the 

addresses of the study participants. If height and location of street canyon improve the 

model but these data are not available in a GIS, alternatives might be used for estimating 

exposure at addresses. Information about height is sometimes available from study 

questionnaires or the floor can sometimes be deduced from the address information. 

Further, dispersion models could be used to assess the effect of height on air pollution 

concentrations. This ‘height’ factor could be applied to the land use regression estimates.   

5. Study area specific local GIS data 

This may include information about wood smoke, distance to sea/lake, distance to major 

air pollution source, distance to harbor, etc. For each area it has to be evaluated whether 

such study area specific local data are needed and if these data are available in a GIS. If 

available in GIS, these data should be evaluated when developing the LUR model.  

6. Land use data 

The central available CORINE land use data have been shown to be predictors in intra-

urban land use regression models. Raw CORINE land cover data have however a 

resolution of ~25 ha, but can be used in grids of 100m. The quality of CORINE data and 

classification varies may not be entirely consistent between countries. Further, CORINE 

data may not have incorporated specific land use for a specific area or country. It is thus 

recommend that each centre collects local GIS land use data. We anticipate that only 

modest gains will be obtained by getting local data, hence collection of local land use data 

has modest priority. If available, data for different years, i.e. for the current situation as 

well as for the relevant time window of exposure, should be collected. The required 

accuracy for local land use datasets is 100 meter.     

7. Emission data 

The central available emission data are only available for 50km grids and can therefore 

not be used for modeling at smaller scales. Availability of more detailed local emission 

data should be checked (preferably for different years, i.e. for the current situation and for 

the relevant time window of exposure). The required accuracy for local emission data is 

1000 meter. Source-specific data should be obtained. 

8. Satellite data 

We will check the possibilities to include satellite data into the assessment. Satellite data 

will be used as potential predictor variables in the exposure models, for example satellite 

data of land use. There are no central satellite data available, so the availability and 

relevance of satellite data should be evaluated locally. Please evaluate for your study area 

which satellite data are available and whether they can be used as predictor variables in 
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the exposure assessment model. The required accuracy for the satellite data is 100 meter.  

Su has recently demonstrated the usefulness of using satellite data for characterizing 

street configuration, though in a geographically simple setting (Su, 2008).  

 

The availability of all the local GIS datasets as described in Table 3 should be checked. For 

each of the evaluated local GIS dataset the following information is then needed, please 

collect this information for each local GIS dataset: 

• Whether the local GIS dataset as described in Table 3 is available. And if not, why 

the dataset is not available 

• Name of GIS dataset 

• Description of GIS dataset 

• Type of data  

Are the data vector data or raster data? And if the data are raster data, how large are 

the grids? 

• Accuracy/resolution of the dataset 

What is the resolution of the dataset? Because of the large spatial variation in air 

pollution concentrations close to roads and in urban areas, geographic precision of 

GIS databases of potential predictor variables is important and should be evaluated 

and documented. Further, evaluate whether there are differences in accuracy within a 

study area.  

• Completeness 

Does it cover the whole study area? Which area does the dataset cover (e.g. national 

dataset)? 

• Coordinate system 

What is the coordinate system of the GIS dataset (local, national, latitude/longitude 

coordinate system etc)? For the GIS analyses, all data have to be in the same 

coordinate system. Preferably conversion to different coordinate systems has to be 

restricted to a minimum, because this may result in loss of accuracy. 

• Year(s) of data availability 

If available, data for different years, i.e. for the current situations as well as for the 

relevant time window of exposure, should be collected.  

• (Potential) Costs of the dataset 

 

Send this information to Rob Beelen (r.m.j.beelen@uu.nl) AND Gerard Hoek 

(g.hoek@uu.nl), so the data can be evaluated in the Exposure Working Group, and an 

overview can be made of which GIS data are available in the different study areas.  
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3.3  Area-level potential confounders for the epidemiological analysis 

 

Area-level potential confounder data will not be used as potential predictor variable for the 

exposure model. It is listed here because it is efficient that these data are collected by the 

same persons collecting data on GIS predictor variables.  

Several studies have shown that apart from individual socio-economic status (SES)-level, the 

SES level of for example a neighbourhood may also be an important confounder. Appendix 

III gives an overview of used area-level confounder variables in other studies and discusses 

which area-level confounder variables may be relevant within the ESCAPE study. This will 

be further discussed with the Health WP leaders. Please evaluate for your study area which of 

the described possible area-level confounder variables are relevant for your study area (or 

maybe there might be other potential data relevant), whether these data are available and for 

which spatial scale and which time period these data are available. As these data will be used 

in the epidemiological analyses, it should also be discussed with the people responsible for 

the epidemiological analyses for that study area which data are needed and relevant.  
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4.  GIS analyses 

 

With the collected GIS datasets GIS analyses will be conducted to derive the values for the 

predictor variables for the coordinates of the monitoring sites and the addresses of the study 

participants (section 4.1). For mapping purposes, also the values for the centroids of 100 m 

grids over the study area should be obtained (see chapter 5, this is only necessary for the 

predictor variables that are included in the final LUR models).  

In addition, GIS analyses will also be conducted to collect traffic variables that will be used as 

independent exposure variables in the epidemiological analyses (Section 4.2). Some of the 

traffic variables will also be used as predictor variable in the LUR models. Section 4.3 gives a 

short explanation of some of the key GIS-analyses that may be conducted. 

 

It is important to note that for the monitoring sites the geographical coordinates will be 

already available after the monitoring campaign has finished and GIS analyses can then 

already be conducted for the coordinates of the sites regardless whether the coordinates for 

the address of study participants are already available. Because for some studies the addresses 

of study participants first have to be geocoded, which may cost some time, the GIS analyses 

for the coordinates of the monitoring sites and the development of land use regression models 

should already start. The GIS analyses for the coordinates of study participants’ addresses can 

then start after the addresses have been geocoded.   

 

4.1  Predictor variables for land use regression development 

 

Before starting with the GIS analyses for the predictor variables, please make first a table 

with the a priori selected predictor variables for you study area (see also Table 1 for potential 

relevant predictor variables) by updating Table 4. Table 4 shows the buffers and directions of 

effect that are defined and should be used within the ESCAPE project. Do not use other 

definitions.  

The coordinates will only be offered if a model has been developed to test if the model with 

more explicit variables can be improved with coordinates (describing slow trends in 

background).  

Please also use the variable names as described in Table 4 because a combined dataset with 

all data from the different study areas will be made. 

 



Table 4.  Predictor variables with predefined variable names, units, defined buffer sizes, transformations of the predictor variables and directions of effect. 

 
GIS 
dataset 

Predictor variable Name variable1 Unit Buffer size (radius of 
buffer in meter) 

Transformation Direction 
of effect 

Background 
- Coordinate variables2 XCOORD, YCOORD m NA Local decision  NA 
CORINE High density residential land 3 HDRES m2 100,  300, 500, 1000, 

5000 
- 
 

+ 

CORINE Low density residential land 3 LDRES m2 100,  300, 500, 1000, 
5000 

- 
 

+ 

CORINE Industry 3 INDUSTRY m2 100,  300, 500, 1000, 
5000 

- 
 

+ 

CORINE Port 3 PORT m2 100,  300, 500, 1000, 
5000 

- 
 

+ 

CORINE Urban green 3, 4 URBGREEN m2 100,  300, 500, 1000, 
5000 

- 
 

- 

CORINE Semi-natural and forested areas 3, 5 NATURAL m2 100,  300, 500, 1000, 
5000 

- 
 

- 

Local land 
use 

  m 100,  300, 500, 1000, 
5000 

2 - Following 
CORINE 

Population 
density 
 

Number of inhabitants 3 
 

POP 
 

N(umber) 
 

100,  300, 500, 1000, 
5000 

- 
 

+ 

Household 
density 

Number of households HHOLD N(umber) 100,  300, 500, 1000, 
5000 

- 
 

+ 

Altitude Altitude SQRALT m NA square root - 
Traffic 6 

Local road 
network 

Traffic intensity 6 on nearest road TRAFNEAR 
 

Veh.day-1 NA - + 

Local road 
network 

Distance to the nearest road DISTINVNEAR1 
DISTINVNEAR2 

m-1, m-2 NA Inverse distance and 
inverse distance 
squared 

+ 

Local road 
network 

Product of traffic intensity on nearest 
road and inverse of distance to the 

INTINVDIST 
INTINVDIST2 

Veh.day-1m-1 

Veh.day-1m-2 
NA - 

 
+ 
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nearest road and distance squared 
Local road 
network 

Traffic intensity on nearest major road 7 TRAFMAJOR 
 

Veh.day-1 NA - + 

Local road 
network 

Distance to the nearest major road 7 DISTINVMAJOR1 
DISTINVMAJOR2 

m-1, m-2 NA Inverse distance and 
inverse distance 
squared 

+ 

Local road 
network 

Product of traffic intensity on nearest 
major road and inverse of distance to the 
nearest major road and distance squared 
7 

INTMAJORINVDIST 
INTMAJORINVDIST2 

Veh.day-1m-1 

Veh.day-1m-2 
NA - 

 
+ 

Local road 
network 

Total traffic load of major roads in a 
buffer (sum of (traffic intensity * length 
of all segments)) 7 

TRAFMAJORLOAD Veh.day-1m 

 
25, 50, 100,  300, 500, 
1000 

- + 

Local road 
network 

Total traffic load of all roads in a buffer 
(sum of (traffic intensity * length of all 
segments)) 

TRAFLOAD Veh.day-1m 

 
25, 50, 100,  300, 500, 
1000 

- + 

Local road 
network 

Heavy-duty traffic intensity on nearest 
road 

HEAVYTRAFNEAR* 
 

Veh.day-1 NA - + 

Local road 
network 

Product of Heavy-duty traffic intensity 
on nearest road and inverse of distance 
to the nearest road and distance squared 

HEAVYINTINVDIST 
HEAVYINTINVDIST2 

Veh.day-1m-1 

Veh.day-1m-2 
NA - 

 
+ 

Local road 
network 

Heavy-duty traffic intensity on nearest 
major road 

HEAVYTRAFMAJOR 
 

Veh.day-1 NA - + 

Local road 
network 

Total heavy-duty traffic load of major 
roads in a buffer (sum of (heavy-duty 
traffic intensity * length of all 
segments)) 

HEAVYTRAFMAJORLOAD Veh.day-1m 

 
25, 50, 100,  300, 500, 
1000 

- + 

Local road 
network 

Total heavy-duty traffic load of all roads 
in a buffer (sum of (heavy-duty traffic 
intensity * length of all segments)) 

HEAVYTRAFLOAD Veh.day-1m 

 
25, 50, 100,  300, 500, 
1000 

- + 

Central 
road 
network 

Road length of all roads in a buffer ROADLENGTH m 25, 50, 100,  300, 500, 
1000 

- + 

Central 
road 

Road length of major roads in a buffer 8 MAJORROADLENGTH m 25, 50, 100,  300, 500, 
1000 

- + 
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network 
Central 
road 
network 

Distance to the nearest road DISTINVNEARC1 
DISTINVNEARC2 

m-1, m-2 NA Inverse distance and 
inverse distance 
squared 

+ 

Central 
road 
network 

Distance to the nearest major road 8 DISTINVMAJORC1 
DISTINVMAJORC2 

m-1, m-2 NA Inverse distance and 
inverse distance 
squared 

+ 

 Aspect ratio (sum height buildings both 
side of road divided by road width) 9 

CANYON 9 m/m NA   

1  Variable name: Combining name and buffer size, for HDRES:  HDRES_100, HDRES_300, HDRES_500,HDRES_1000, HDRES_5000 
2 The coordinates will only be offered if a model has been developed to test if the model with more explicit variables can be improved with coordinates (describing slow 
trends in background). 
3 Area of that land use in the buffer (m2) 
4 Corine Urban green is the sum of classes 141 and 142 
5 Corine semi-natural is the sum of classes 311, 312, 313, 321, 322, 323, 324, 331, 332, 333, 334, 335, 411, 412, 421, 422, 423, 512, 521, 522 and 523 
6  Traffic intensities are traffic intensities per 24h 
7  Definition of major road for local road network: road with traffic intensity > 5,000 mvh/24h 
8  Definition of major road for central road network: classes 0, 1, and 2 (+ classes 3 and 4 based on local knowledge and decision) 
9  To be decided later how to be exactly defined and how to be used 
NA is not available  
 



This paragraph describes some background information about the size of the buffer area for a 

predictor variable. Predictor variables in land use regression models are usually computed as 

circular zones around each monitoring site, using buffer functions available in GIS. This is 

done to evaluate the impact of predictor variables at different spatial scales. The selection of 

buffer size is crucial in determining the performance of the model, and the spatial resolution 

of the estimates. Ideally, buffer sizes should be selected to take account of known dispersion 

patterns. Various monitoring studies have shown that the impact of a major road on 

concentrations of traffic-related air pollutants declines exponentially with distance to the road. 

Beyond about 100 m from a major urban road, or 500 m from a major freeway, variability is 

limited. In inner-city areas, however, buildings may cause marked departures from this simple 

distance-decay pattern (e.g. for street canyons). There is also evidence to suggest that air 

pollution concentrations fall virtually to background levels behind a row of uninterrupted 

buildings. Especially in the compact European urban areas, much of the variation in traffic-

related air pollution is therefore extremely local. The use of the larger buffer sizes (300, 500, 

1000 m) is included to reflect the sum of emissions in a larger area, not specifically the 

nearest roads. In urban areas the buffer size should however be even smaller (for example a 

radius of 100 meters). For variables such as population or address density, and land use the 

buffer size may however be larger (see Table 4). 

 

Traffic intensity on the nearest street is an important variable. In some local road networks, 

minor roads were present but without traffic intensity attached. Several local road networks 

with traffic intensity data, only contained the major roads. Minor roads were completely  

excluded from the network. In order to use the variable traffic intensity and distance to 

nearest street, a low value should be assigned to these minor roads. We will all assign the 

value 500 to these streets. In the first scenario this is sufficient as the distance to the nearest 

street is valid. In the second scenario (incomplete network), also the distance to the nearest 

street is incorrect. The following steps should be made: 

• Calculate distance to nearest street (DISTNEAR) with the local network and central 

road network (DISTNEARC) 

• If DISTNEAR – DISTNEARC < 10 m, then keep DISTNEAR and TRAFNEAR 

• If DISTNEAR – DISTNEARC > 10 m, then replace DISTNEAR with DISTNEARC. 

If additionally, the central road has class 3 or higher the standard low value is 

assigned. If it has class 0, 1, 2 we will assign the average traffic intensity of major 

roads, provided this occurred in a small number of cases. 
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4.2  Traffic exposure variables 

 

GIS analyses will also be conducted to collect traffic variables for the addresses of study 

participants that could be used as independent exposure variables in the epidemiological 

analyses.  

The following traffic variables have to be collected (if data are available). The first four are 

also predictors in exposure modeling, the MAJORROAD variable is an additional variable.   

• Traffic intensity on the nearest road (TRAFNEAR) and inverse distance to the nearest 

road (DISTINVNEAR1), based upon local road network 

• Traffic intensity on the nearest major road (TRAFMAJOR) defined as a road with traffic 

intensity > 5,000 vehicles / day and inverse distance to the nearest major road 

(DISTINVMAJOR1), based upon a local road network 

• Total traffic load (intensity*length) on major roads in a 100m buffer 

(TRAFMAJORLOAD), based upon local road network 

• Indicator variable indicating whether a coordinate is within 50m of a class 1 or 2 type 

road and/or within 100m of a class 0 road (=motorway), based upon central road network. 

This needs to be calculated and named MAJORROAD. 

• Sum of road length of major roads defined as class 0, 1 or 2 (and possibly classes 3 or 4 

based upon local knowledge) from the central road network within a 100m buffer 

(MAJORROADLENGTH).  

 

These traffic indicators will be included in the epidemiological analyses together with a 

modelled background concentration. For this we will use NO2 as this pollutant is available for 

all study areas and is measured at more locations than PM, which is important when we will 

model background only sites (typically about 50% of all sites). The modelling of this 

background concentration will be described in section 5.2.2 (background concentrations land 

use regression modelling). 

 

 

4.3  Explanation GIS analyses 

 

The GIS analyses will be conducted using ArcGIS. A multi-day training workshop will be 

organized about GIS analyses (and land use regression modelling) in the beginning of 2010 

for the groups that were in measurement year 1 (and early 2011 for the groups that were in 

measurement year 2).   
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The main analyses that will be conducted are calculating distances from coordinates to air 

pollution sources (for example nearby roads) and calculating the value of a predictor variable 

in a buffer around a coordinate (for example area of industry in a buffer). After finishing these 

analyses, conduct some checks. For example select the observations with the lowest and 

highest traffic intensities and the observations with the highest percentage of industry and 

check whether this is correct for these coordinates using for example Google Earth or other 

route maps. 

 

The following text briefly describes commands that can be used for the main GIS analyses. 

More details about these commands can be found in the help-function of ArcGIS.  

1. Creating multiple buffers around monitoring sites. 

In ArcToolBox go to Analysis Tools  Proximity  Multiple Ring Buffer.  Enter relevant 

buffer distances (see Table 4).  Set the ‘Dissolve Option’ to ‘NONE’ then press ‘OK’.   

    

2. Intersect 

The multiple buffers around each monitoring site are intersected with GIS data (e.g. road data, 

landcover data)  In ArcToolBox go to Analysis Tools  Overlay  Intersect.  In the 

Intersect window select the input features (e.g. roads and the buffer shape files) and add them 

to the Feature list.  In the Output Feature Class enter a name for the new shapefile.  Click 

‘OK’. 

 

3. Update Geometry 

The intersect tool cuts out features (lines or areas) which falls inside the buffer.  ArcGIS does 

not automatically recalculate the length (or area) for these intersected features in shape files.  

The geometry of the resulting shape file, therefore, needs updating.  To do this open the 

attribute table of your newly created intersect shape file and right-click the Length (or Area) 

field and choose Calculate Geometry from the drop down menu.  In the Calculate Geometry 

dialog, check that ‘Property’, Coordinate system and ‘Units’ are correct (e.g. length = m, area 

= m2) and click ‘OK’.  If there is no length (or area) field in the shape file first add it as a new 

field (type = Double) to the attribute table and then calculate the geometry. 

 

4. Calculating Proximity (to roads) 

A commonly used indicator in epidemiological investigations of traffic related air pollution 

and health is the distance between subject’s home address and the nearest road.  In ArcInfo 

this can be computed by the NEAR command.  In ArcMap this is done by spatial join, by 

right clicking on the monitoring site and from the drop-down menu selecting Join and Relates 

 Join.  In the Join Data dialog you can append data from another layer to monitoring sites 
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file.  Choose the ‘spatial location’ option.  In the Join Data dialog, under 1) choose the layer 

which you want to join to the monitoring sites (e.g. the road shape file).  Under 2) tick the 

second button so that each monitoring site will be given all the attributes of the nearest road 

segment.  Under 3) you need to give a name to the new layer which will be created.  The 

resulting shape file will have a new field ‘distance’ which is the distance to the nearest road 

segment. 

 

5. Area-weighting 

Area weighting is used to redistribute data from one geography (source map unit, e.g. census 

areas) onto a different, non-overlapping geography (target map unit, e.g.  buffers).   It is often 

used to redistribute census totals to calculate small-area population estimates.  The total 

population from the census remains unchanged after area weighting. 
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Where: Pt is the population in target map unit t; Ps is the population in source map unit s; As is 

the area of source map unit s; and Ats is the area of target map unit t overlapping source map 

units. 

 

The steps are as follows: 

• Intersect buffer with census area (with population data attached) 

• Rename the area field of the census shape file as ‘area_tot’ 

• Add a new item to the intersect field called ‘area_int’ 

• Recalculate the geometry of ‘area_int’ 

• Add a new field ‘pop_weighted’ 

• Use the field calculator to compute the area-weighted population in the 

‘pop_weighted’ field: (‘area_int’ /’area_tot’) x ‘census_pop’ 

The sum of the weighted population within each buffer can be computed using for example 

PIVOT table in Excel.  

  

 

DEALING WITH RASTER DATA 

Until now we have only described analyses with vector based GIS data (roads, landcover).  

However, GIS data is also available in raster format (e.g. altitude and population) and is 

handled in a different way.   
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6. Extract values to points (for Altitude) 

The altitude variable is not calculated in buffers.  Instead this variable is simply the altitude 

(in m) at the point location (x,y coordinates) of the monitoring site and/or cohort address.  

The tool to extract values from a raster to x,y coordinates is found under Spatial Analyst 

Tools  Extraction  Extract Values to Points.  Add the input point features (monitoring 

sites / cohort addresses) and the input raster (altitude) to create a new shape file with the 

altitude value attached.   

 

7. Raster to poly (for Population) 

To calculate buffer variables from raster GIS data the raster must first be converted to vector 

data (polygons) using the following steps: 

 

• Raster to poly (Spatial Analyst  Convert  Raster to Features) 

• Add new field ‘area_new’ 

• Calculate geography 

• Add new field ‘multiplier’ 

• Calculate ‘multiplier = area_new / area_cell’ 

• Add new field ‘new_pop’ 

• Calculate ‘new_pop = muliplier x gridcode’ 

  

Instead of creating a polygon feature for each cell in the raster, adjacent raster cells with the 

same value (e.g. 50) are merged into one larger polygon feature with that value (50).  This 

needs to be corrected so we do not underestimate the real population in our polygon shape 

file.  The multiplier in the steps above is used to indicate merged cells so this correction can 

be applied.  The area_cell is constant and refers to the original cell resolution of the raster 

(length x width of a cell in m2).   

 

Now step 5 (area-weighting) can be used to compute the buffers for the population variable.  

 

As described above, a multi-day training workshop will be organized about GIS analyses (and 

land use regression modelling) in the beginning of 2010 for the groups that are in 

measurement year 1 (and in the winter of 2011 for the groups that are in measurement year 2).   
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5.  Development and validation of land use regression and other 

exposure models 

 

 

5.1  Introduction land use regression modeling   

 

After the GIS analyses have been conducted, for each monitoring location the following 

information is available: 

• Geographical coordinate 

• Annual average air pollution concentration (measured in the period 2008-2010) 

• Values for potential predictor variables 

The average concentrations and values for potential predictor variables will be used to 

develop prediction models using stochastic modelling techniques. Stochastic modelling 

techniques involve developing statistical associations between potential ‘predictor variables’ 

and measured pollutant concentrations. Regression techniques are often used for this purpose 

and the technique is often called land use regression (LUR) modelling. The developed 

regression equations are then used to predict concentrations at unsampled sites (i.e. the 

coordinates of addresses of study participants). This technique was successfully developed in 

a number of studies (Hoek et al 2008). These studies have shown that regression models can 

explain a large part of the spatial variations in air pollution concentrations.  

 

The sections below describe the procedures for land use regression development (Section 5.2) 

and checks and procedures for validation of the land use regression models (Sections 5.3 and 

5.4). Section 5.5 lists the other modelling techniques we will evaluate in a selected number of 

study areas.  

 

 

5.2   Land use regression model development 

 

Modelling is performed mainly by the local group who conducted also the measurements. 

Central supervision and training will be provided for the study teams. A multi-day training 

workshop will be organized to harmonize development of land use regression models (in 

combination with explanation of how to conduct GIS analyses). This training workshop was 

organized in April 2010 for the groups that are in measurement year 1 (and early 2011 for the 

groups that are in measurement year 2).   
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The default is that land use regression (LUR) models will be developed for each study area 

separately. Data from different areas will also be pooled to develop a model based on data 

from a larger number of monitoring sites. Study areas could be combined for modelling when 

areas are comparable (factors of interest are for example distance to sea, mountains, 

urbanization). A ‘dispersion’-potential is useful to combine data from different areas. 

“Dispersion”-potential describes the degree of dispersion of a certain area related to 

geography and meteorological conditions. 

 

The default is that models will be developed for each air pollutant separately. This implies 

that models will be made for PM10, PM2.5, PMcoarse (PM10-PM2.5), absorbance of PM2.5, NOx 

and NO2. We added coarse PM to this because of recent interest in the health effects of this 

PM fraction. We will drop NO because it is measured with lower quality than NO2 and NOx. 

Moreover NOX is a better marker of primary emissions than NO. The number of sites 

available for PM models is smaller than for NOx, so in section 5 we evaluate whether PM 

models can be made using data from NOx. In addition, we will have data on elemental 

composition. Elements will be grouped in meaningful source-related groups instead of using 

each individual element.  

 

Untransformed concentrations will be used as these are more readily interpretable. Usually 

the use of untransformed concentrations will only modestly violate normality of the 

distributions, but this will be carefully evaluated. A further advantage of using untransformed 

concentrations is that concentration data that are used in dispersion models are also 

untransformed concentrations.  

Some studies used the untransformed concentrations whereas other studies use the logarithm 

of the concentration (Gilbert et al 2005; Henderson et al. 2007; Ryan et al. 2007; Moore et al. 

2007; Jerrett et al. 2007) in an attempt to better approximate a normal distribution of the 

residuals. When a log transformation is used, the interpretation of the model changes from an 

absolute contribution of variables in the model to a relative change.  

 

The concentration data from the ESCAPE reference site in PM + NOx study area should not 

be used for LUR model development, because these data have been used for the time 

adjustment. 

 

Before starting with model development first conduct descriptive analyses of the annual 

average air pollution concentrations and the potential predictor variables. This includes 

boxplots of concentration data and predictor variables, a.o. to evaluate whether there are 

 30



outliers. Further, evaluate also the variation in predictor variables over the monitoring sites, 

for example check whether there are many monitoring sites with value zero for a predictor 

variable. Then the correlation between predictor variables will be calculated to assess the 

potential for co-linearity in developing models. Scatterplots including a linear regression 

equation and R2 of the concentrations of the different pollutants will be prepared. The 

correlation is useful because it shows the potential we have to disentangle independent effects 

of different pollutants and the potential we have to use NO2 to predict PM. The relationship 

between NO2 and NOx is of interest to check especially the linearity of the relationship. In 

dispersion models NOx is modelled and then transformed into NO2, because the relationship 

is non-linear and dependent on the ozone concentration (Beelen et al. 2010).  Standard linear 

regression will be used to develop a LUR model that best predicts the measured 

concentrations, i.e. a model that maximizes the percentage explained variability (R2) and 

minimizes the error (RMSE – Root Mean Square Error).  

A supervised forward stepwise procedure will be used. Predictor variables have to be a priori 

defined (see Section 4.1 and Table 4). The regression models will then be developed using 

these a priori defined predictor variables. There is no restriction regarding the number of 

predictor variables that is used in the final models. The model should be developed while 

stating in advance the sign of the regression slope of a specific predictor in the model (see 

Table 4). For example we know that traffic emissions will increase the concentration. 

Regression models that include a negative slope for traffic intensity variables will therefore 

not be accepted as the final model. We therefore do not use automatic selection procedures, 

implemented in statistical packages. Both SAS, STATA, SPSS or another statistical software 

package (but not Excel) can be used to develop regression models. 

 

We will develop two models. The first model is based upon all sites and all predictors (overall 

concentration including background and local traffic impacts – see section 5.2.1). The second 

model will only include background sites and predictors (background model – see section 

5.2.2). The second model is added because the background concentration can be used in 

conjunction with traffic intensity variables as an alternative exposure model (see Section 4.2).  

The centrally and locally available GIS predictor variables will be evaluated at the same time. 

There is no a priori priority for one of the datasets. 

 

5.2.1  Overall concentrations (full dataset)  

 

In step 1, univariate regression analyses will be conducted for all possible predictor variables 

so that each predictor variable is regressed against monitored concentrations. The 

concentrations of all sites will be used. The model with the highest adjusted explained 
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variance (adjusted R2) is regarded as the ‘start model’. To this ‘start model’ the remaining 

variables will be added separately, and the effect on the adjusted R2 recorded. The predictor 

variable with the highest additional increase in adjusted R2 will be maintained in the model if 

three criteria are satisfied: (1) the increase in adjusted R2 is greater than 1%, (2) the 

coefficient conforms to the pre-specified direction, and (3) the direction of effect for 

predictors already included in the model does not change. This ensures that models involving 

counter-intuitive associations be avoided, even if they give a stronger basis for prediction as 

indicated by adjusted R2 value.  

When a variable is included, other buffer sizes of the same variable can be offered to the 

model, both smaller and larger buffers. In model development the original sizes can be 

offered to judge whether they provide additional explained variability. Due to co-linearity, 

slopes may be instable but the predicted values and R2 are valid. In the final model, we will 

rewrite the model using ‘outer or inner rings’ of buffers. For example, if urban green with a 

1000m buffer is included in the model first (see Table 4) and then urban green within a 100m 

buffer with both negative signs, the final model will be written as urban green in a 100m 

buffer and urban green in 1000m buffer minus urban green in 100m buffer. This will result in 

more interpretable regression slopes.  

The addition of variables in this supervised stepwise process will be repeated until there are 

no remaining predictor variables that add more than 1% to the adjusted R2 of the previous 

regression model, which results in a ‘intermediary model’.    

The last step is to evaluate the significance of the variables in the model. In using adjusted R2 

as an inclusion criterion, some variables may become highly non-significant as additional 

variables are included in the model. As a final step, therefore, variables with p value >0.10 

will be sequentially removed from the model, starting with the least significant, until all 

predictor variables in the ‘final model’ have a p ≤ 0.10. 

 

5.2.2  Background concentrations  

 

In this scenario regression models will be separately developed for background concentrations 

only. The background model will be used in epidemiological analyses including traffic 

indicators (section 4.2). The model for the background scale will be developed using only 

background sites (both regional and urban background sites). For developing the background 

model only background predictor variables will be evaluated (Table 4). The model 

development procedure is the same as described above for the ‘Overall concentration’ 

scenario. 
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5.3  Checks for regression analysis including spatial autocorrelation 

 

Standard diagnostic tests for ordinary least squares regression will be applied to the final 

models: 

• Influential observations 

The influence of each observation on the estimates will be measured. Influential 

observations are those that have a large influence on the parameter estimates. Cook’s 

D, which is a measure of influence, will be used to evaluate whether there are 

influential observations. Cook's D measures the change to the estimates that results 

from deleting each observation. If there are influential observations, it will be 

evaluated whether the parameter estimates in the regression model change when this 

influential observation is excluded from the analyses. Default is however that no data 

will be excluded. 

• Heteroscedasticity of the residuals  

A plot will be made of the monitored concentrations and the residuals to evaluate 

whether there is heteroscedasticity. 

• Plots of and tests for normality of the residuals 

A test for normality of residuals will be conducted (this test is however not that 

important). 

The most important is the test for influential observations. 

 

In addition, ordinary kriging will be conducted on the residuals of the final regression models 

to evaluate spatial autocorrelation in the residuals. For this the coordinates and the residuals 

for each monitoring site are needed. In addition, Moran’s I will be calculated, as this statistic 

provides a significance test of spatial autocorrelation which is not available for kriging. If 

there is spatial autocorrelation of the residuals the assumption of independence for the 

residuals is violated. In most land use regression studies, it was observed that residuals of 

regression models did not exhibit spatial autocorrelation anymore, suggesting that ordinary 

linear regression is appropriate. Semi-variograms will be made for the residuals which will be 

used to evaluate whether there is a pattern of spatial autocorrelation in the residuals. If 

needed, ordinary kriging can be centrally conducted by IRAS / Imperial College. R will be 

used to conduct kriging. 

If the tests for ordinary least squares regression are good, and if there is no spatial 

autocorrelation of the residuals, then the linear regression model can be used to predict 

concentrations at the cohort addresses. If there is significant spatial autocorrelation of the 

residuals, we will use universal kriging methods instead of ordinary least squares regression 
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modelling. The resulting universal kriging model will then be validated, and will then be used 

to estimate concentrations at cohort addresses. R will be used to conduct universal kriging. 

 

 

5.4 Model validation 

 

Model validation is a crucial part of applying land use regression methods. Various 

approaches have been taken with respect to validation. 

Within ESCAPE we will use the leave-one-out cross-validation, in which a model is 

developed for n-1 sites and the predicted concentrations are compared with the actually 

measured concentrations at the left-out site. This procedure is repeated n times and the overall 

level of fit between the predicted and observed concentrations, across all sites, then computed 

as a measure of model performance. The structure of the model remains constant for each 

estimate (Brauer et al. 2003; Hochadel et al. 2006). The performance measures that will be 

evaluated are the correlation between measured and estimated concentration, a scatter plot 

between measured and estimated concentration, and the R2 and RMSE value of the regression 

equation.  

Other studies have also used other validation methods. An approach is to sub-divide the 

monitoring sites into a training dataset for model development and a smaller group of sites for 

model validation (Briggs et al. 1997). This approach requires less intensive computer 

processing, but may be disadvantaged by the a priori division of sites (e.g. concentrations 

measured at the training and validation sites may differ, especially when the total number of 

sites is small). However, within ESCAPE there is only a limited number of monitoring sites.  

 

5.5 Summary of LUR output 

 

In summary, for each of the following pollutants we will have available the model used for 

predicting concentrations using all predictors and the cross-validation R2 and RMSE. We will 

also have available a background model used for predicting background concentrations using 

only background predictors and the cross-validation R2 and RMSE. The pollutants we will 

model include: 

- PM2.5 

- PM10 

- PMcoarse (PM10-PM2.5) 

- Absorption coefficient PM2.5 

- NOx and NO2 

- “Source-specific” elements from XRF  
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5.6 Central ESCAPE database 

 

Further, the datasets from each study area including concentration data, coordinates, site IDs 

and predictor variables that have been used for developing these models will be combined in 

one large centrally available dataset. Therefore it is also important to use the variable names 

as described in Table 4. The exact format of the database is included in appendix V. 

 

As has become clear during the plenary ESCAPE meeting in 2010, the comparison of our 

measurements with routine measurements is important for the EU policy makers. Therefore 

also submit these comparisons (which were included in the study manual already) as separate 

Excel files.  

 

 

5.7 Documentation of LUR models 

 

To harmonize development of LUR models by the individual centers further, we will also 

prepare a standard documentation of the models including all the steps listed in the previous 

section, that is both descriptive analyses and the final model and cross-validation. This 

documentation will be reviewed by the ESCAPE Exposure WG. Submit the documentation to 

IRAS, r.m.j.beelen@uu.nl 

Document: 

1. Distribution of adjusted annual average concentrations (min, 10th percentile, 25th 

percentile, 50th percentile, 75th percentile, 90th percentile, max and arthitmetic mean) 

2. Scatterplots with correlation of adjusted averages of all pollutants 

3. Scatterplots of unadjusted versus adjusted with correlation for each pollutant 

4. Distribution of predictor variables (see 1, use names of Table 4) 

5. Correlation between predictor variables 

6. Final developed model with 

a. Variables included in the model 

b. Regression coefficients, standard error and p-value of all variables including 

intercept 

c. R2, adjusted R2 and RMSE of model development 

d. R2, adjusted R2 and RMSE of cross validation 
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5.8  Other exposure assessment methods 

 

Other exposure assessment methods that will be evaluated in specific areas within ESCAPE 

are: 

• Dispersion models 

The use of dispersion models for exposure assessment will be evaluated in a selection of 

the study areas in a later stadium of the project. We will not develop new dispersion 

models, but use already existing dispersion models. Dispersion models have been used in 

Stockholm, Oslo, Copenhagen and the SAPALDIA study in Switzerland. Some of the 

variables that will be used as potential predictor variables in the LUR models are the 

same as for dispersion models, and might be used. 

An attractive option is to use the output of a dispersion model as one of the inputs of a 

land use regression model (in addition to the other potential predictors mentioned before). 

In areas where dispersion models are available, this can be a sensitivity analysis. 

• Bayesian Maximum Entropy (BME) models 

A proposal about BME with a description on how to compare BME with LUR modeling 

will be written by Audrey De Nazelle. If possible, BME will be evaluated in 3 study areas 

(Barcelona, UK and the Netherlands).  

• Latent variable approach which can also be applied in Bayesian Maximum Entropy 

models. This is a technique which makes use of the information on different variables 

measured at a variable number for sites. In ESCAPE, models for traffic particles could be 

developed based on the 20 PM sites and 40 NOx sites, using the relationship between 

NO2 and PM at the 20 sites. 

• Co-kriging is a geo-statistical technique which uses information and information on other 

pollutants to estimate the concentration of PM at unmeasured sites. One option is to 

estimate the PM concentrations at the 20 sites NOx sites where no PM measurements 

have been conducted and then apply the regular LUR procedures of section 5.2 

• Focalsum 

Focalsum procedures to estimate concentrations may be applied to a selection of the study 

areas. Emission and monitoring data are needed for the focalsum procedures. Imperial 

College will be able to conduct the focalsum procedures. 
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6.  Estimation of air pollution exposure at addresses of study 

participants 

 

The final LUR model will be used to estimate outdoor air pollution concentrations at the 

addresses of study participants. The model has been developed using monitored 

concentrations in the period 2008-2010. These concentrations will thus be assigned to the 

addresses of study participants.  

Exposure for the study participants will be estimated based on the geographical coordinates of 

the addresses of study participants. These geographical coordinates will be made available by 

the health work packages when the addresses have been geocoded. If the addresses have not 

been geocoded yet, the groups that will do the GIS analyses and exposure assessment will 

geocode the addresses of cohort members which will be made available by the health work 

packages. The procedure for geocoding is described in the ESCAPE geocoding procedure 

(Appendix IV). The geographical coordinates of the addresses or the addresses of study 

participants will be transferred from the health work packages to the groups who will do the 

GIS analyses and exposure modeling in the respective study areas. Because of this data 

transfer this may introduce a privacy issue. 

Either GIS analyses have been conducted parallel to the GIS analyses for the coordinates of 

the monitoring sites, or the GIS analyses for the coordinates of the addresses will be 

conducted separately. For the coordinates of the addresses the same GIS analyses will be 

conducted and the same potential predictor variables will be collected compared with the 

coordinates for the monitoring sites (see Sections 3 and 4). When the values for the predictor 

variables are available for the coordinates of the addresses, it is relatively straightforward to 

estimate outdoor air pollution concentrations for the coordinates of the cohort addresses by 

filling in the developed exposure model.  

Exposure estimation will be conducted for all available addresses with coordinates. For 

example residential histories might be available, and in some cohorts information may be 

available for home and work / school / day care address, and also for these addresses 

predictions can be made. 

The distribution of the estimated concentrations at the addresses will be explored and 

compared with the distribution of the measured concentrations at the monitoring sites in order 

to assess the predicted concentrations and to evaluate whether there are any extreme 

predictions. If there are extreme predictions it will be checked why there are extreme 

predictions (e.g. extreme values for predictor variables). If necessary, such extreme values for 

predictor variables could be truncated and given the highest value which occurs at one of the 

monitoring sites for that specific predictor variable. Other reasons might be that the 
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coordinate of an address is located by coincidence (e.g. because GIS datasets and/or 

geocoding are not accurate) on an air pollution source (for example a major road) resulting in 

high estimated concentrations. 

Further checks that will take place are that the coordinates / addresses with the highest and 

lowest estimated concentrations will be checked with Google Earth/Maps or a topographical 

map. It will be evaluated whether the coordinates / addresses with the highest concentration 

are located close to an air pollution source (for example a major road), and whether the 

coordinates / addresses with the lowest concentrations are located in an area without air 

pollution sources (e.g. rural areas). 

In addition, concentration maps will be made for the whole study area. This is for presentation 

purposes only. This means that for centroids of 100m grid cells concentrations will be 

estimated. This will also mean that GIS analyses should be conducted to collected data for the 

GIS predictor variables for each of these centroids. Because the model is already developed, 

only values for predictor variables included in the final LUR model have to be collected, as is 

done for the cohort addresses.  

 

The exposure estimates for all addresses can then be transferred to the groups that will 

conduct the epidemiological analyses (NB First extrapolation over time should be applied – 

See Section 7). In addition, the R2 value and RMSE value of the cross-validation results of the 

developed final LUR model should also be provided. These values indicate how good the 

model is and indicates the amount of exposure misclassification. Sensitivity epidemiological 

analyses can then be conducted by excluding the areas for which the LUR models have more 

measurement error. As our key interest is in assessing spatial variability well, the R2 obtained 

from cross-validation will be used to characterize potential measurement error. 
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7.  Exposure estimation over time 
 

Monitoring data and developed LUR models are for the time period 2008-2010. A challenge 

within the ESCAPE project is that for several of the included studies, concentrations need to 

be estimated for the past.  

The information about which time period is the most relevant for each health outcome and 

corresponding study area has to come from the different Health WPs.  

It will be study area specific how far back in time estimations can be made. The local people 

from the exposure groups should evaluate temporal aspects in their study area.  

 

We will address temporal aspects by: 

1. Documenting the stability of the spatial contrast generated by the ESCAPE LUR 

model by collecting previous spatially resolved monitoring data (if available) 

2. Documenting the temporal trend of concentrations using previous monitoring data 

(also possible if not spatially resolved) 

3. Adjusting the ESCAPE LUR model with the observed temporal trend 

 

The ESCAPE LUR model will be used as the main exposure variable in the epidemiological 

analyses. An advantage of this is that no external data (which can differ between study areas) 

are needed for estimating a trend over time. Time-trend adjusted variables will be included as 

a sensitivity analysis. 

 

Adjustment for changes in spatial patterns is generally not possible, because of lack of data. 

Adjustment for changes in concentrations over time is however possible. An absolute 

difference between different time periods will be estimated, however this does not imply that 

the time trend needs to be linear. Compared to using the original data, such an adjustment for 

temporal trends may have no effect on the estimated relative risks in the epidemiological 

analyses, but it has an effect on graphs of exposure-response relationships. In addition, it may 

have an effect if in a study recruitment occurs over multiple years and if a study is comprised 

of multiple areas which have a different time trend. Furthermore the scaling is relevant if 

residential history is taken into account. 

 

In summary, the exposure data for addresses of study participants that will be available for the 

epidemiological analyses are: 

1. Concentrations based on the exposure model that has been developed based on the 

2008-2010 ESCAPE air pollution data (= main exposure variable) 
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2. Concentrations that have been estimated after applying a temporal trend (= exposure 

variable for sensitivity analyses) 

Procedures for evaluation of trends and backward extrapolation of annual air pollution 

concentrations are described in Section 7.1. Birth cohort studies require more detailed 

temporal resolution, e.g. estimates for each trimester during pregnancy (Section 7.2). For 

some studies residential history information or other addresses than only the home address 

might be available (e.g. work address, school addresses, etc). If these addresses are available, 

exposure will also be estimated for these addresses (Section 7.3). 

 

7.1  Evaluation of changes in spatial patterns and adjustment for temporal trends 

  

7.1.1  Evaluation of changes in spatial patterns and temporal trends 

 

Monitoring data 

In some ESCAPE study areas previous study-specific spatially dense monitoring has taken 

place. We re-sampled many of the sites used in 1999 in the TRAPCA study (Munich, 

Stockholm and the Netherlands), so that we will have direct evidence of the agreement 

between spatially distributed measurements of PM and NO2 in these three European 

cities/areas obtained several years apart. Further information might come from the 

SAPALDIA study and ECRHS Spain. These data will also be used to estimate trends over 

time, also intra-urban. Trends over time for all site types together and for the different site 

types will be estimated using mixed modeling. This trend can then also be applied to the 

estimated LUR concentrations.  

  

In the large majority of the study areas, monitoring of air pollution by routine continuous 

network sites has been in operation for many years so that trends over time can be addressed. 

Concentration data have to be collected for all types of sites (regional, urban, traffic) and as 

far back in time as possible. We will first evaluate a European database based upon 

AIRBASE, in which an assessment has been made of changes in sites and monitoring 

methods by the European Topic Center on Air pollution (dr Frank de Leeuw).  

AIRBASE does not have all sites and is only complete after 2000. Local centers should 

therefore try to collect reliable routine monitoring data. An annual mean should consist of 

concentrations of at least 75% of the days in a year (i.e. 75% data capture for annual mean). If 

the study area contains a sufficient number of sites (e.g. > 5), some indication of the spatial 

stability can be obtained by comparing routine monitoring data over time and the ESCAPE 

predictions versus the routine monitoring data. If a small number of sites exist, trends over 
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time for all site types together and for the different site types separately will be estimated 

using mixed modelling.  

Correlations between concentrations of different years will be calculated. Previous studies 

have shown that the correlation between air pollution concentrations of different years is high, 

even over a period of more than 10 years (Beelen et al, 2007). Whether a trend can be 

estimated over a time period longer than 10 years is area-specific, and depends whether there 

have been large changes in road network, emission sources, land use, etc.  

 

Disadvantages of using previous monitoring data may be that the data do not exist far enough 

back in time for some ESCAPE study areas, and the composition of for example PM10 has 

been changed over time which cannot be taken into account with these data. A careful 

evaluation of changes in the network needs to be performed, as monitoring techniques may 

have changed, sites may have changed or (traffic) conditions around specific sites may have 

changed. Further, different time trends within one study area cannot usually be modeled, so 

the assumption is that the pattern over space is similar in an area. 

 

We will further evaluate the possibility to assess historic time trends using satellite data.  

 

Modelling data 

• Background pollution maps 

Models to estimate background concentrations of PM and NOx in previous years exist in 

some ESCAPE study areas, typically on fairly large spatial scales of no less than 5 x 5 km 

(for example in the Netherlands, UK and Sweden, but possibly also other countries). 

These maps have been developed using a combination of network data and dispersion 

modelling and are updated each year. We will evaluate the usefulness of these data after 

comparing with our monitoring data. These models could possibly also be used to 

evaluate spatial patterns in air pollution concentrations for different time periods. 

Similar to information from previous monitoring data, a disadvantage may be that the 

data do not exist far enough in time.  

• Historical emission data and dispersion models 

Historical emission databases of sufficient resolution and quality exist in only a few 

locations (e.g. Stockholm), so that the usability of dispersion modelling is limited. Where 

available, dispersion models will be used to asses trends in (spatial pattern) time. It will 

however give too optimistic results, because the same model is used for each year, only 

input data will be different for different years. Historical emission data and dispersion 

models will therefore be less useful to estimate trends in air pollution concentrations, but 

could be used for assessing changes in spatial patterns over time.  
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Historical GIS data 

Historical data on land use, road networks etc. exist as well which allow us to judge whether 

the spatial ranking of current ambient concentrations has been stable. These historical data 

should thus be collected (see Section 3). 

Correlations between values (for example for land use) between different years will be 

evaluated and trends over time will be evaluated. For data like road networks, it will be 

evaluated whether the road network changed over the years, and which changes occurred. 

Further, the correlation between traffic intensities of different years can be calculated. A 

recent study (Beelen et al, 2007) showed that major roads remained likely in place, and the 

major roads are the roads that are most important for air pollution exposure. Spatial pollution 

patterns probably tend to be fairly stable across large urban areas as for example land use and 

the road network of major roads often do not change quickly or abruptly over time.  

 

IRAS will provide a questionnaire about previous monitoring data and about previous 

modeling which will be distributed to each of the ESCAPE study areas. This information can 

then be used to estimate historical air pollution concentrations and evaluate spatial patterns. 

 

 

7.1.2  Backward extrapolation of air pollution concentrations 

 

Although documentation of changes is the main response towards time trends, we will 

perform sensitivity analyses using backward extrapolation of annual air pollution 

concentrations to test the sensitivity of the epidemiological findings to temporal trends. The 

default is to use one absolute time trend correction difference, calculated as the absolute 

difference between 2009 and the year for which an estimate was desired (e.g. 1999). If solid 

data from multiple sites exist, we may use different factors within the study area, e.g. 

differentiating between rural and urban or background and traffic sites. Typically, the number 

of sites will not allow that.  

 

 

7.2  Exposure estimation for birth cohort studies  

 

While modelled annual average concentrations are sufficient for most study areas within the 

ESCAPE project, pregnancy outcome studies in WP3 require more detailed temporal 

resolution. In pregnancy outcome studies, it is common to express exposure as the average 

concentration per month or trimester of a specific pregnancy (Slama et al. 2007). The required 
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exposure thus needs to contain a spatial and temporal component. To date this has not been 

systematically evaluated.  

One simple option is to develop LUR models using annual average concentrations and then 

use continuous routine monitoring data to produce a temporally varying component. This 

approach makes the assumption that the spatial pattern is constant in time.  

This was for example used in the TRAPCA study. The spatial exposure estimates were yearly 

averages that did not allow testing for a higher susceptibility to atmospheric pollutants during 

a given trimester of pregnancy. To seasonalize the exposure model (i.e. include a temporal 

component depending on the conception and delivery dates), the temporal observations 

observed in one background station in Munich operated by the Bavarian Environmental 

Protection Agency were applied to the exposure. For NO2, this was done by averaging the 

NO2 daily mean levels over the pregnancy of each woman (of continuous sampling site), by 

dividing this average by the average NO2 level during the TRAPCA measurement campaign 

from 1999-2000, and multiplying the corresponding coefficient by the NO2 estimate from the 

TRAPCA II spatial model. Within ESCAPE, we will use the absolute difference instead of 

the ratio, as ratios may be problematic for low concentrations.  

Using the same approach, trimester-specific exposure variables were estimated. The 

assumption was that temporal variations in the considered atmospheric pollutants were similar 

across the metropolitan area. Although reasonable, this assumption was likely to have induced 

exposure misclassification, which was believed to be minor compared with that which would 

exist when temporal variations in air pollution had been ignored. 

A similar approach will be used for the pregnancy outcome studies within WP3 of the 

ESCAPE study.  

Daily air pollution data from one or more background continuous monitoring sites are 

therefore needed. Only sites with more than 75% data capture will be used to estimate 

pregnancy-specific or trimester-specific exposure estimates. 

 

 

7.3  Residential history and other addresses 

 

For some studies residential history information or other addresses than only the home 

address might be available (e.g. work address, school addresses, etc). Data on residential 

histories of study participants allow us to back calculate exposures as well. If these addresses 

are available, exposure will also be estimated for these addresses. 

A questionnaire about address information in each of the cohorts has been distributed to each 

of the Health WPs.  
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8.  Additional exposure issues 
 

The sections above describe the ‘standard’ modeling procedures for ESCAPE study areas in 

which monitoring will be conducted. There may however be some additional exposure issues 

in some study areas or within some studies. In some study areas both ESCAPE monitoring 

may have taken place as well as previous spatially resolved models may be available that 

could be used for exposure assessment (Section 8.1). For some large studies, there may be 

study areas for which no ESCAPE measurements will be conducted, but which have spatially 

resolved models (e.g. study areas within SAPALDIA or ECRHS) (Section 8.2). For some 

multi-center studies, there may be study areas for which no ESCAPE measurements will be 

conducted and for which no spatially resolved models are available (study areas in France and 

United Kingdom), but for which national (governmental) monitoring data are available 

(Section 8.3).  

Please contact the Health WPs to ask which areas also could be included for the exposure 

assessment besides the areas for which ESCAPE monitoring will take place. If for more study 

areas exposure could be assessed, this would result in a larger number of study observations 

available for epidemiological analyses. 

If one or more of these additional exposure issues apply to a study area or a study, please 

inform the exposure assessment working group (Rob Beelen: r.m.j.beelen@uu.nl and Gerard 

Hoek: g.hoek@uu.nl), and it will be evaluated for each study area how to use all available 

data in the best way, and how exposure can be estimated. 

If procedures as described in Section 8 have been used for exposure assessment this should 

also be informed to the Health WPs. Sensitivity analyses could then be conducted with and 

without these study areas. 

 

8.1  Both ESCAPE data and previous monitoring and / or modeling data available 

 

For some study areas both ESCAPE exposure data and spatially resolved models are 

available. These previous exposure data may for example be for a time period which is closer 

to or in the relevant time window of exposure for a specific health outcome.  

Exposure will be estimated in 2 ways for these study areas: (1) using the ESCAPE 

procedures, and (2) using the previous modeling data. Both previous LUR and/or dispersion 

exposure assessment models can be used. The agreement between the two estimates will be 

calculated at the residential addresses, which includes two sources of variation: temporal 

trend and method. If the model can be applied again, agreement at the ESCAPE and previous 

study monitoring sites (in case of a previous LUR study) can also be calculated.  
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The ESCAPE monitoring data will then be used for validation. The previous exposure 

assessment model will be used to estimate the concentrations at the ESCAPE monitoring 

sites. The correlation and scatterplot between measured and estimated concentration, mean 

difference (and range/SD) between measured and estimated concentration, and R2 value and 

RMSE-value of regression analysis between measured and estimated concentration will then 

be calculated to evaluate the validity of the model on the ESCAPE monitoring sites. See also 

section 7.1. 

Because of harmonization and comparison with other ESCAPE study areas, in all study areas 

exposure will be estimated using the ESCAPE procedures and epidemiological analyses will 

be conducted with the ESCAPE exposure estimates. As a sensitivity analysis, previous 

modelling exposure estimates will be used. 

 

8.2  For specific study area no ESCAPE data available, but spatially resolved models 

available 

 

For some multi-center or national studies that are included in ESCAPE there may be study 

areas for which no ESCAPE monitoring will be conducted, but for which previous local 

exposure data are available. For example, ESCAPE monitoring will not take place in all 

SAPALDIA and ECRHS areas, while previous local exposure assessment may be available 

for these areas.  

 

First, it should be evaluated whether the ESCAPE models developed for other areas can 

reasonably be applied in the study area despite the fact that no monitoring takes place. 

Recalibration of models may be an option.  

Second, if that is too uncertain, exposure for the participants in these study areas will be 

estimated using these previous exposure assessment models. For these areas, the previous 

exposure models can however not be validated using ESCAPE monitoring data (as described 

in Section 8.1). If the models have been shown to agree well with ESCAPE monitoring in 

other (SAPALDIA or ECRHS) areas, this may not be a serious limitation.  

Further we suggest to the Health WPs that because for the comparison and harmonization 

within the ESCAPE project, the data from these study areas will only be included in the 

epidemiological analyses as a sensitivity analysis (so the default is to conduct the 

epidemiological analyses without the data from these areas).  
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8.3  No ESCAPE data and no spatially resolved models available 

 

For some multi-center or national studies in ESCAPE, there may be study areas within such 

studies for which no ESCAPE measurements will be conducted and for which no local 

monitoring and/or modeling data are available, i.e. study areas in France and the United 

Kingdom where study participants live in the whole country but ESCAPE measurements will 

only be conducted in selected monitoring areas. Although no local exposure data are 

available, monitoring data from fixed (governmental) monitoring sites are available in these 

study areas.  

For France, measurements will be conducted in a limited number of monitoring areas (Paris, 

Grenoble, Lyon, and Marseille), and only in Paris PM and NOx will be measured while in the 

other areas only NOx will be measured. The areas are distributed in different regions of 

France. Because PM is measured only in Paris and because of the geographical and other 

differences over France, for PM only a model for Paris will be made. However, for NOx a 

model will be made with which also exposure can be estimated for addresses located outside 

the monitoring areas. Because France has a national NOx network, this network will be used 

to estimate the regional background concentration for the whole country (using 

interpolation/kriging). Within the monitoring areas a NOx LUR model will be made to 

estimate the urban background component and the local traffic component, using a combined 

model for the different study areas. Further, for each study area separately a study specific 

NOx LUR model will be made using only the ESCAPE monitoring data. A comparison will 

be made how well the combined model performs in the monitoring areas compared to the 

study-area specific model.  

A few of the sites for each monitoring area have been located around the city in background 

locations and preferably a few sites will be collocated with sites of the national monitoring 

network to evaluate (systematical) differences between the concentrations measured by the 

fixed monitoring sites and by the ESCAPE monitoring sites.   

For the epidemiological analyses this will mean: 

1. Analyses with all addresses.  

Exposure will be estimated using data from the regional monitoring network and a 

combined LUR model for the different study areas. 

2. Analyses with only addresses in areas where ESCAPE monitoring has been 

conducted. 

Exposure will be estimated for each study area separately using a study area specific 

LUR model. 

 

For the UK,  Imperial College will provide a proposal for monitoring and modeling. 
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Monitoring will be conducted in Manchester (PM and NOx) and Bradford (NOx and limited 

number of PM measurements). Further, it was planned to conduct a monitoring campaign in 

Oxford (PM and NOx). The “Oxford” cohort is however spread over the whole country, and it 

is therefore not worthwhile to conduct a specific monitoring campaign in Oxford. Instead of 

in Oxford, the monitoring campaign will be conducted in the Thames valley (London, 

Oxford). 

Similar to France it will not be possible to develop a nationwide PM exposure assessment 

model. The UK has also a nationwide NOx measurement program, which can be used to 

estimate the regional NOx background concentration, and within the monitoring areas a 

combined LUR model will be developed to estimate the urban background and local traffic 

component. For each study area separately a study specific NOx model will be made using 

only the ESCAPE monitoring data (same procedure as in France – see above). 

For the epidemiological analyses this will mean: 

1. Analyses with all addresses.  

Exposure will be estimated using data from the regional monitoring network and a 

combined LUR model for the different study areas. 

2. Analyses with only addresses in areas where ESCAPE monitoring has been 

conducted. 

Exposure will be estimated for each study area separately using a study area specific 

LUR model. 
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9.  Coordination  
 

The exposure assessment procedure will be coordinated and supervised by the WP leaders of 

WP2 and the Exposure Working Group. To ensure that all groups use the same procedures for 

estimating exposure and to harmonize exposure assessment which is mostly performed 

locally, the procedures for exposure assessment are described in this ESCAPE exposure 

assessment manual. Further, we will organize a workshop in which the procedures will also 

be explained and training will be provided how GIS analyses, LUR model development and 

exposure assessment should be conducted. The Exposure WG will also supervise the 

development of models in various stages of the project, by reviewing locally developed 

models. 
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10.  Time planning 

 

The table below describes the time planning and the date when each step in the exposure 

assessment should be finished. Please note that some steps will cost a considerable amount of 

time and may need some work in advance. For example, the collection and evaluation of GIS 

data may cost some time. Further, the geocoding of addresses of study participants may be 

time consuming (a Geocoding manual is available). And the extrapolation of air pollution 

estimates over time may cost some time in advance, e.g. the collection of historical air 

pollution data, dispersion/emission data and GIS data. Please make sure to start in advance 

with all these steps.  

 

 Month of completion  

Activity 1st year group 2nd year group 

Collection of GIS data February 2010 December 2010 

GIS analyses May 2010 February 2011 

LUR model development September 2010 May 2011 

Geocoding addresses study participants (if 

needed) and GIS analyses for addresses 

October 2010 August 2011 

Evaluation of and collection of (SES) area level 

confounders 

October 2010 August 2011 

Collection of traffic indicator variables for 

coordinates of addresses of study participants 

November 2010 September 2011 

Assessment of air pollution estimates for 

addresses based on LUR model 

November 2010 September 2011 

Extrapolation air pollution estimates over time November 2010 September 2011 

Additional issues December 2010 October 2011 
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Appendix I: Central road network classes 
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Appendix II: CORINE 2000 classes 

 

CLC_CODE LABEL1 LABEL2 LABEL3 RGB HD res LD res Ind Port Urb 
Green 

Semi 
Nat 

111 Artificial 
surfaces 

Urban fabric Continuous 
urban fabric 

230-
000-077 

x           

112 Artificial 
surfaces 

Urban fabric Discontinuous 
urban fabric 

255-
000-000 

  x         

121 Artificial 
surfaces 

Industrial, 
commercial and 
transport units 

Industrial or 
commercial 
units 

204-
077-242 

    x       

122 Artificial 
surfaces 

Industrial, 
commercial and 
transport units 

Road and rail 
networks and 
associated land 

204-
000-000 

            

123 Artificial 
surfaces 

Industrial, 
commercial and 
transport units 

Port areas 230-
204-204 

      x     

124 Artificial 
surfaces 

Industrial, 
commercial and 
transport units 

Airports 230-
204-230 

            

131 Artificial 
surfaces 

Mine, dump and 
construction 
sites 

Mineral 
extraction sites 

166-
000-204 

            

132 Artificial 
surfaces 

Mine, dump and 
construction 
sites 

Dump sites 166-
077-000 

            

133 Artificial 
surfaces 

Mine, dump and 
construction 
sites 

Construction 
sites 

255-
077-255 

            

141 Artificial 
surfaces 

Artificial, non-
agricultural 
vegetated areas 

Green urban 
areas 

255-
166-255 

        x   

142 Artificial Artificial, non- Sport and 255-         x   
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surfaces agricultural 
vegetated areas 

leisure facilities 230-255 

211 Agricultural 
areas 

Arable land Non-irrigated 
arable land 

255-
255-168 

            

212 Agricultural 
areas 

Arable land Permanently 
irrigated land 

255-
255-000 

            

213 Agricultural 
areas 

Arable land Rice fields 230-
230-000 

            

221 Agricultural 
areas 

Permanent 
crops 

Vineyards 230-
128-000 

            

222 Agricultural 
areas 

Permanent 
crops 

Fruit trees and 
berry 
plantations 

242-
166-077 

            

223 Agricultural 
areas 

Permanent 
crops 

Olive groves 230-
166-000 

            

231 Agricultural 
areas 

Pastures Pastures 230-
230-077 

            

241 Agricultural 
areas 

Heterogeneous 
agricultural 
areas 

Annual crops 
associated with 
permanent 
crops 

255-
230-166 

            

242 Agricultural 
areas 

Heterogeneous 
agricultural 
areas 

Complex 
cultivation 
patterns 

255-
230-077 

            

243 Agricultural 
areas 

Heterogeneous 
agricultural 
areas 

Land principally 
occupied by 
agriculture, with 
significant areas 
of natural 
vegetation 

230-
204-077 

            

244 Agricultural 
areas 

Heterogeneous 
agricultural 
areas 

Agro-forestry 
areas 

242-
204-166 

            

311 Forest and semi 
natural areas 

Forests Broad-leaved 
forest 

128-
255-000 

          x 
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312 Forest and semi 
natural areas 

Forests Coniferous 
forest 

000-
166-000 

          x 

313 Forest and semi 
natural areas 

Forests Mixed forest 077-
255-000 

          x 

321 Forest and semi 
natural areas 

Scrub and/or 
herbaceous 
vegetation 
associations 

Natural 
grasslands 

204-
242-077 

          x 

322 Forest and semi 
natural areas 

Scrub and/or 
herbaceous 
vegetation 
associations 

Moors and 
heathland 

166-
255-128 

          x 

323 Forest and semi 
natural areas 

Scrub and/or 
herbaceous 
vegetation 
associations 

Sclerophyllous 
vegetation 

166-
230-077 

          x 

324 Forest and semi 
natural areas 

Scrub and/or 
herbaceous 
vegetation 
associations 

Transitional 
woodland-shrub 

166-
242-000 

          x 

331 Forest and semi 
natural areas 

Open spaces 
with little or no 
vegetation 

Beaches, 
dunes, sands 

230-
230-230 

          x 

332 Forest and semi 
natural areas 

Open spaces 
with little or no 
vegetation 

Bare rocks 204-
204-204 

          x 

333 Forest and semi 
natural areas 

Open spaces 
with little or no 
vegetation 

Sparsely 
vegetated areas 

204-
255-204 

          x 

334 Forest and semi 
natural areas 

Open spaces 
with little or no 
vegetation 

Burnt areas 000-
000-000 

          x 

335 Forest and semi 
natural areas 

Open spaces 
with little or no 
vegetation 

Glaciers and 
perpetual snow 

166-
230-204 

          x 
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411 Wetlands Inland wetlands Inland marshes 166-
166-255 

          x 

412 Wetlands Inland wetlands Peat bogs 077-
077-255 

          x 

421 Wetlands Maritime 
wetlands 

Salt marshes 204-
204-255 

          x 

422 Wetlands Maritime 
wetlands 

Salines 230-
230-255 

          x 

423 Wetlands Maritime 
wetlands 

Intertidal flats 166-
166-230 

          x 

511 Water bodies Inland waters Water courses 000-
204-242 

            

512 Water bodies Inland waters Water bodies 128-
242-230 

          x 

521 Water bodies Marine waters Coastal lagoons 000-
255-166 

          x 

522 Water bodies Marine waters Estuaries 166-
255-230 

          x 

523 Water bodies Marine waters Sea and ocean 230-
242-255 

          x 

999 NODATA NODATA NODATA               
990 UNCLASSIFIED UNCLASSIFIED 

LAND 
SURFACE 

UNCLASSIFIED 
LAND 
SURFACE 

              

995 UNCLASSIFIED UNCLASSIFIED 
WATER 
BODIES 

UNCLASSIFIED 
WATER 
BODIES 

230-
242-255 

            

 

 
 
 
 
 
 



Appendix III: Possible area-level confounders for the ESCAPE 

project 
 

1.  Summary 

The area-level confouders that are possibly relevant for the ESCAPE project are described in 

the Table below. Please evaluate for your study area which of the described possible ecologic 

covariate (or maybe there might be other potential data) are relevant for your study area, 

whether these data are available and for which spatial scale and which time period these data 

are available. The relevant spatial scale can differ for covariates and smaller (e.g. 

neighborhood) and larger (e.g. city-wide) spatial scales might be important. 

Please provide an overview with what is available for your own study area (see Section 7 for 

a more extensive explanation of the to be evaluated ecologic covariates). 

 
 

Table: Possible ecologic confounders identified in the literature, which might be relevant for 

ESCAPE 

Demographic and socioeconomic environment 

Income 

Income inequality 

Proportion households with income below minimum 

Housing values 

Ratio between owner-occupied houses and rented houses 

Unemployment rate 

Proportion of people who depend on benefits 

Proportion people with severe financial problems 

Proportion of single mothers 

Infrastructure deprivation 

Residential stability/population change 

Urbanization 

Region/province 

Climate and physical environment 

Water hardness 
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Health services 

Availability and accessibility of health services 

General practitioner deprivation score 

 

 

 

2.  Background – Evaluated ecologic covariates in the HEI reanalysis of the Six Cities 

and ACS study 

 

The proposed ecologic covariates in the HEI reanalysis of the Six Cities and the ACS study 

were classified in 3 categories: demographic and social environment, climate and physical 

environment, and health services. Finally, in the reanalysis 20 ecologic covariates were used 

from a longer list of 30 potential ecologic covariates (Table 1). A more detailed description of 

the ecologic covariates that were included in the reanalysis can be found on page 178 of the 

reanalysis report.(Krewski, Burnett et al. 2000) 

Briefly, eight measures of the social environment were considered: population change, 

percentage of white residents, percentage of black residents, mean income of residents in 

1979, poverty level in 1979, income disparity as measured by the Gini coefficient, 

unemployment in 1979, and percentage of residents age 25 or older who had completed high 

school. In terms of the physical environment, altitude, water hardness, and climate (average 

maximum temperature, average monthly variation in maximum temperature, average daily 

relative humidity, and average monthly variation in daily relative humidity). Four gaseous co-

pollutants were also used in the reanalysis: CO, NO2, O3, and SO2. Two measures of the 

provision of health care services were used: number of physicians per 100,000 residents and 

number of hospital beds per 100,000 residents. However, it was not possible to obtain data on 

certain ecologic covariates for some of the cities included in the ACS study.(Krewski, Burnett 

et al. 2000) 

Reasons for not including some proposed ecologic covariates in the analyses ranged from no 

data available (barometric pressure) and no reliable data available (crime rate and other airborne 

toxic substances) to that the data do not necessarily represent a useful group-level variable (race, 

serum iron levels, and air conditioning). A full description of the proposed ecologic covariates 

that are not used is given in Appendix E of the HEI reanalysis report.(Krewski, Burnett et al. 

2000)     
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Table 1: Proposed ecologic covariates in the HEI reanalysis 

Demographic and socioeconomic environment 

Used in the reanalysis Not used in the reanalysis 

Income Crime rate 

Education Race 

Income disparity Serum iron levels 

Population change  

Poverty  

Unemployment  

Percent whites  

Percent blacks  

Climate and physical environment 

Used in the reanalysis Not used in the reanalysis 

Temperature Barometric pressure 

Temperature variation Air conditioning 

Relative humidity Geographic position: latitude and 

longitude 

Relative humidity variation Other airborne toxic substances 

Altitude Radon gas 

Water hardness  

Gaseous copollutants: 

CO, NO2, O3, SO2     

 

Health services 

Used in the reanalysis  

Number of physicians  

Number of hospital beds  

 

3.  Relevance of the proposed ecologic covariates in the HEI reanalysis for study areas 

within the ESCAPE project 

 

The demographic variables that were considered in the HEI reanalysis may all be relevant for 

the different study areas in the ESCAPE project. Also some of the climate and physical 
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environment variables may be relevant for some of the study areas within the ESCAPE 

project depending also on the size of the study area. Gaseous co-pollutants are certainly 

relevant, but will be treated as exposures instead of ecologic covariates.   

It has to be evaluated which of the proposed ecologic covariates in the HEI reanalysis are 

relevant for each of the different study areas within the ESCAPE project. Furthermore, the 

HEI reanalysis used ecologic covariates on a metropolitan scale. This is probably not the most 

relevant scale. ‘Neighborhood’ or ‘postal code areas’ are probably better as the spatial scales 

for ecologic covariates in the ESCAPE study areas since large differences in demographic 

variables exist in urban areas. In addition, larger scale than city-level may be relevant, for 

example region (see also Table 3 below). 

 

 

4.  Possible ecologic covariates identified in the literature 

 

Similar to the search for possible ecologic covariates in the reanalysis of the ACS study, we also 

made use of 3 categories (i.e. demographic and socioeconomic environment, climate and 

physical environment, and health services) to conduct our own literature search for possible 

ecologic covariates. Both a Medline search and reference-tracking was conducted to identify 

possible relevant ecologic covariates. The possible ecologic covariates found in the literature are 

shown in Table 2. It is however not sure whether all these data are available on an area level or 

whether these data are available on the preferred area level and for the preferred time period in 

all study areas within the ESCAPE project. It has also to be evaluated which of the identified 

possible ecologic covariates may be relevant for each of the study areas within the ESCAPE 

project.  

Some of these ecologic covariates were identified from studies investigating the effects on 

mortality, other ecologic covariates were identified from studies which investigated the effects 

on other health outcomes. Whether an ecologic covariate is relevant in a study area depends 

thus also on the health outcome under study.  
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Table 2: Possible ecologic confounders identified in the literature 

Demographic and socioeconomic environment 

Income 

Income inequality 

Proportion households with income below minimum 

Housing values 

Ratio between owner-occupied houses and rented houses 

Unemployment rate 

Proportion of people who depend on benefits 

Proportion people with severe financial problems 

Proportion of single mothers 

Infrastructure deprivation 

Residential stability/population change 

Urbanization 

Region/province 

Climate and physical environment 

Water hardness 

Health services 

Availability and accessibility of health services 

General practitioner deprivation score 

 

 

5.  Discussion 

 

It is important to conceptualize the causal pathways by which ecologic covariates can affect 

health.(Pickett and Pearl 2001). Differences in health between areas may be caused by two 

mechanisms: 

1. Socioeconomic differences or differences in area-bound factors such as for example 

pollution differences between areas; 

2. Selective migration of “healthy” people out of “non-healthy” areas (for example 

cities).(Lucht and Verkleij 2001) 

For ecologic covariates, both the average and the spread of ecologic covariates may be worthy 

of examination (Pickett and Pearl 2001), for example mean income versus income range in a 
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neighborhood. Ecologic covariates may also be inter-correlated and therefore the correlation 

between different ecologic covariates has to be evaluated.  

Most of the possible ecologic covariates found in the literature are social economic status 

(SES) related covariates. To investigate the effect of these ecologic SES covariates, individual 

level SES covariates have to be accounted for. Furthermore, different alternative measures of 

SES may be considered jointly because each measure may represent different aspects of 

social status and may be associated with different intermediate risk factors in the relation 

between SES and health (Backlund, Sorlie et al. 1999). Therefore, in the analyses, account 

was taken for individual level SES covariates and different alternative area level measures of 

SES. 

However, results from studies indicate that the choice of area level variables may be less 

critical than ensuring correct control for individual level social economic status. (Fiscella and 

Franks 1997; Lucht and Verkleij 2001; Pickett and Pearl 2001; Osler, Prescott et al. 2002; 

Steenland, Henley et al. 2004) For example, the results of a study with analysis of pooled data 

from two cohort studies (13,710 women and 12,018 men) indicated that area based income 

inequality did not affect all cause mortality after adjustment for individual income and other 

risk factors. The authors concluded that Denmark’s welfare system, that is based on a Nordic 

model, may even out the effect of area inequality.(Osler, Prescott et al. 2002) In addition, a 

study by Fiscella and Franks had almost the same conclusion, i.e. family income, but not 

community income inequality independently predicted mortality. This study was a 

longitudinal study in the US where 14,407 people (aged 25-74 years) were followed from 

1971-5 until 1987.(Fiscella and Franks 1997) A longitudinal study in Canada where 2,116 

people (age 18-75 years) were followed from 1990 through December 1999, found that 

neighborhood socioeconomic characteristics (neighborhood income, educational level, 

unemployment rate) were not significantly associated with mortality. However, within 

advantaged neighborhoods, the importance of individual socio-economic characteristics for 

mortality is increased relative to disadvantaged neighborhoods. This has also been 

demonstrated in the US and thus also, although less pronounced, in Canada, in a setting with 

universal access to basic health and social services.(Veugelers, Yip et al. 2001) A recent 

cohort study by Steenland et al. on individual- and area-level socioeconomic status variables 

as predictors of mortality with 179,383 study participants suggested that the predictive value 

of area-level socioeconomic status variables varies by cause of death but is less important 

than individual-level socioeconomic status variables.(Steenland, Henley et al. 2004) 

Studies in the Netherlands also showed that after correction for more individual level SES 

factors smaller health differences between neighborhoods were found.(Lucht and Verkleij 

2001) However, the findings of a longitudinal study (GLOBE-study) in the Netherlands 

(baseline: 1991, with a follow-up time of 6 years) in 8,506 men and women aged 15-74 years, 
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indicated that particular indicators of neighborhood SES were related to all cause mortality of 

men and women in an urban setting. After the stringent control for individual SES, the 

neighborhood percentage of unemployed or disabled persons, and the percentage who 

reported severe financial problems continued to affect mortality risks. The educational and 

occupational indicators of neighborhood SES were also related to mortality, but less strongly, 

and their effects were no longer statistically significant after control for individual-level 

socioeconomic indicators.(Bosma, van de Mheen et al. 2001)  

Although ecologic covariates may be less important than individual-level variables, both 

individual and ecologic variables will be evaluated as potential confounders in the ESCAPE 

project. 

 

 

6.  Relevant spatial scale for ecologic covariates 

 

A study by Reijneveld et al. (Reijneveld, Verheij et al. 2000) in the Netherlands examined the 

impact of geographical classification on the clustering of poor health (as measured by 4 

indicators in a interview: self rated health, physical symptoms, mental symptoms, and long 

term physical limitations) per area and on the size of the differences in health by area 

deprivation. Three classifications were used: 

1. Neighborhoods are areas with a similar type of buildings, often delineated by natural 

boundaries. Because of this, they are socioculturally rather homogenous and therefore 

relate to “real” communities, but their population size varies a great deal. 

2. Postcode sectors (postal code areas) have a logistic origin, adequate post delivery, and 

were designed at a national level. They had to comprise similar numbers of addresses 

and therefore, their average population size varies less. Postcode sectors do not further 

have a (emotional) meaning to most of their residents. 

3. Boroughs concern aggregates of socioeconomically comparable neighborhoods; they 

mostly exist in urban areas. In some of the bigger cities of the Netherlands they have 

their own public administration. 

Regarding homogeneity, ecologic, area-bound factors may have a greater impact on health if 

an area relates to a socioculturally homogeneous, “real”, community. Therefore, the 

independent area effect on the clustering of poor health was largest for neighborhoods. A 

large part of these area effects can be explained by differences between areas in the 

socioeconomic composition of their population. 
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However and more importantly, the choice of the geographical classification had hardly any 

impact on the size of the health differences by area deprivation in this study.(Reijneveld, 

Verheij et al. 2000) 

Because this study has been conducted in Amsterdam, the conclusions cannot automatically 

be applied to other cities/towns and countries. 

Van der Lucht and Verkleij (Lucht and Verkleij 2001) found that mortality differences 

between neighborhoods in cities are greater than mortality differences between cities and non-

urban areas. But mortality differences between neighborhoods do not only exist in cities, but 

can also been found between neighborhoods in non-urban areas. It has been estimated that all 

cause mortality in the “poorest” neighborhoods is 13 percent higher compared with all cause 

mortality in the “wealthiest” neighborhoods. However, mortality differences between 

neighborhoods are especially great among men and women younger than 65 years. At older 

ages, these mortality differences between neighborhoods are small, especially among 

women.(Lucht and Verkleij 2001)  

The exact geographical classification of areas is thus possibly of less importance for studying 

health differences between areas. Furthermore, the relevant spatial scale can differ for 

covariates.  

 

7.  Available and to be used ecologic covariates within the ESCAPE project 

 

In the previous sections it has been described which ecologic covariates may be relevant for 

the ESCAPE project, and which spatial scale may be relevant. However, what is possible also 

depends on the information that is available.  

Please evaluate for your study area which of the described possible ecologic covariate (or 

maybe there might be other potential data) are relevant for your study area, whether these data 

are available and for which spatial scale and which time period these data are available. Also 

evaluate the number and percentage of missing values in each dataset, because not all 

information may be available for the whole study area. If there are many missing values, these 

data should not be used because it would result in a decrease in the number of observations 

available for epidemiological analysis.  

As an example, below an overview is given which GIS-data might be relevant and are 

available in the Netherlands. Using the geographical coordinates of the addresses of the study 

participants for each study participant a value for an ecologic covariate can be generated 

using GIS analyses. In Table 3 an overview is shown which potential ecologic covariates, and 

at which scale and for which year(s), are available for the Netherlands. All these covariates 

can be evaluated as potential ecologic covariates in the epidemiological analyses. 
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Please provide also such an overview for your own study area and discuss this also with the 

people responsible for the epidemiological analyses in that WP. 

 

 

Table 3: Available potential ecologic covariates in the Netherlands. 

Name GIS 

coverage 

Potential predictor variable Spatial scale Year 

Average income per inhabitant 

Percentage persons with low 

income (below the 40th percentile 

of the Dutch income distribution) 

Percentage persons with high 

income (above the 80th percentile 

of the Dutch income distribution) 

“Wijk en buurt” 

Percentage persons who depend 

on benefits 

District/quarter/borough  

Neighbourhood 

(‘wijk’) 

1995, 

1997, 

2001, 

2003, 

2005 

Percentage persons with low 

income (below the 40th percentile 

of the Dutch income distribution) 

“COROP” 

Percentage persons with high 

income (above the 80th percentile 

of the Dutch income distribution) 

COROP area: consist of 

a central point (e.g. a 

city) and the 

surrounding economic 

and social region (the 

Netherlands is divided in 

40 COROP areas) 

1995, 

1997, 

2001, 

2003, 

2005 
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Appendix IV: ESCAPE geocoding procedure 
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Geocoding 
 

Each of the addresses of study participants should be geocoded, i.e. a geographical coordinate 

for each address should be determined. If available, other addresses than baseline home 

address, such as work addresses, residential history or day care/school addresses can be 

geocoded. With these coordinates Geographic Information System (GIS) analyses can be 

conducted and the values for potential air pollution predictor variables and area level 

covariates (socioeconomic status) can be determined for each of the addresses, followed by 

exposure assessment for the addresses. 

The validity of epidemiologic research using geocoded addresses for exposure assessment 

depends on the percentage of addresses that can be geocoded and the positional accuracy of 

locations of geocoded addresses.  

Geocoding can be characterized in terms of its fundamental components: the input data, 

output data, geocoding procedure, and reference dataset (Goldberg, Wilson et al. 2008). The 

input data are the addresses that have to be geocoded and which contain attributes capable of 

being linked to some datum that has been previously geographically coded. The geocoding 

procedure determines the appropriate geographical coordinate to return for an address based 

on the values of its attributes and the values of attributes in the reference dataset. This is by 

far the most complicated portion of the geocoding process. The reference dataset consists of 

the geographically coded information that can be used to derive the appropriate geographic 

code for an input. The output data are the geocoded addresses determined by the geocoding 

procedure to geocode the input. 

Geocoding is an important step in the exposure assessment process, and should be given 

considerable attention. Further, geocoding is no trivial task and may have costs. 

The following sections describe the different components of the geocoding process that 

should be used to geocode addresses of epidemiologic studies within ESCAPE. It is however 

not possible to describe all the different problems and possibilities within the geocoding 

process. If there are any questions, please contact IRAS or Imperial College. 

 

 

Geocoding: already done, yes or no? 

 

In general, there are three options: (1) geocoding is already done; (2) geocoding has not been 

done yet, but a geocoding reference dataset is available; and (3) geocoding has not been done 

yet and there is no geocoding reference dataset available. 
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If addresses have already been geocoded, the accuracy and validation should be described. An 

explanation about what is needed for this description can be found below in the “Geocoding 

procedure” and “Validation” sections.  

For the study areas for which the addresses have not been geocoded yet, the procedures below 

can be used to geocode the addresses. If addresses of study participants have not been 

geocoded yet, the most logical option is that it is done by the local centers, i.e. the groups who 

do the local air pollution measurements and GIS and LUR modelling. Geocoding should be 

done locally because no EU-wide address geocoding database is available. Each local center 

should evaluate which geocoding reference datasets are available. If no geocoding reference 

dataset is available for a specific study area a solution has to be found together with IRAS, 

Imperial College and the exposure assessment working group. 

 

 

The input data 

 

The input data consist of an address record table containing all addresses to be geocoded. 

Required attributes in the address record table include often street address, house number, 

postal code, and city name.  

The default is that baseline home addresses of study participants will be geocoded. If 

available, other addresses than baseline home address, such as work addresses, residential 

history or day care/school addresses should also be geocoded. 

The exact addresses of addresses should be geocoded, i.e. street name/postal code plus house 

number. If address information on a less detailed level - for example only postal codes, on 

street level, or addresses without house number - would be used then the geographical 

coordinate for that home address would be inaccurate. Because air pollution close to busy 

roads varies within tens of meters, it is important to use the exact address of study participants 

for geocoding.    

 

 

Reference dataset 

 

The reference dataset should contain both information about addresses and the corresponding 

geographical coordinates.  

It is important that the percentage correctly geocoded addresses is as high as possible. 

Evaluate therefore the completeness of the reference dataset: i.e. does the reference dataset 

cover the complete study area where the study participants’ addresses are located? 
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Because GIS-analyses will be (mostly) conducted in the local or national centers, the 

coordinates in the reference dataset should have the same coordinate system compared with 

the to be used GIS-data. If the coordinate systems are different it is often possible to convert 

one of the coordinate systems into the other coordinate system. This may however result in 

some loss in accuracy, so preferably the coordinate systems should be the same. 

The required accuracy of geocoding should be at least 5-10 meters (see also Validation 

section). It is thus also important to evaluate what kind of coordinates are available in the 

reference dataset (e.g. no excessive rounding of the coordinates). Reference databases can 

usually consist of coordinates of the centroids of buildings (homes) or parcels. Preferably 

coordinates of centroids of buildings should be used (sometimes these can also be front door 

coordinates), because if parcels are large then the centroid of the parcel may be away from the 

building (this applies especially for buildings in rural areas).    

Preferably the reference dataset should be for the same year as the study’s baseline year to 

avoid assigning incorrect coordinates to addresses because of postal code or house number 

changes over time. If no reference dataset is available for the study’s baseline year, a 

reference dataset should be used which is as close as possible to the baseline year. However, 

also evaluate whether there are changes in precision in datasets from different years. If more 

recent reference datasets are more accurate this may favour the use of these more recent 

datasets. 

The percentage of geocoded addresses could be improved using multiple reference datasets or 

methods. However, this may introduce error because datasets or methods may have different 

accuracy and/or completeness. We therefore recommend using only a single reference dataset, 

i.e. the best reference dataset. 

Also evaluate the costs of the different datasets. If there is more than one reference dataset for 

a study area evaluate the coordinate system, available years, accuracy, completeness and costs 

to decide which reference dataset is the best for a specific study area.  

An example reference dataset is the Address Coordinates Netherlands database in The 

Netherlands, which consists of all registered addresses by the Dutch postal service. The 

accuracy of this reference dataset is high with 95.5% of all coordinates located at the centroid 

of the correct building, 6.0% located at the centroid of the correct parcel, and only 0.5% not 

located in the correct building or parcel.  

 

Geocoding methods 

 

In general there two methods for linking a geographical coordinate to an address: 

building/parcel matching or interpolation.  
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With the building/parcel matching method, each building/parcel has an address and these 

addresses are linked to a geographic file that contains both addresses and corresponding 

geographical coordinates. Linkage based on address information (postal code, street name, 

house number, city name) can be conducted for example in SAS or Access. A further 

advantage of this method is that geocoding is done automatically. Field and/or manual 

methods (e.g. using aerial photography or Google maps) should therefore not be used. 

The interpolation method attempts to match each address to an address-ranged street segment 

georeferenced within a streetline database and then interpolates the position of the address 

along that segment (Zimmerman, Fang et al. 2007). This is based on the proportional distance 

between the address on a record and the address range for a street segment. This method is 

also used in most car navigation systems. Small positional errors may occur because this 

method assumes a homogenous distribution of addresses along a street segment. Such 

positional errors have been shown to be a function of street length and may be larger for rural 

streets which are typically longer than their urban counterparts (Hay, Kypri et al. 2008). 

Because the required accuracy of geocoding should be at least 5-10 meters, the interpolation 

method may not always be accurate enough. This may result in misclassification and bias of 

potential air pollution exposure at addresses of study participants. 

The building/parcel method should therefore preferably be used.  

 

 

Geocoding procedure 

 

To summarize the sections above: preferably geocoding should be conducted using the exact 

addresses of study participants and with a complete and accurate reference dataset. Linking of 

coordinates to addresses should preferably be done using the building matching method. 

Before starting with the geocoding procedure (and also when geocoding has already been 

conducted), give a description of: 

• The input data:  

-  Type of addresses (exact address (postal code plus house number), or only postal code, 

city name etc) 

-  Which addresses are available and can be geocoded; and for which year are these 

addresses available:  

baseline address, residential history, work address, school/day care address, etc  

• The reference dataset:  

-  Completeness: for example does it cover the whole study area, which percentage of the 

total number of addresses in the area is included, etc. 

-  Accuracy and whether accuracy is similar for the whole dataset or whether there are 

 68



areas which are less accurate; This information may be known from the supplier of the 

data 

-  Coordinate system 

-  Whether building or parcel centroids have been used, or other  

-  Year for which geocodes are available 

• The geocoding method: 

-  building matching, parcel matching or interpolation method, or other method 

 

When geocoding, regardless of the to be used method, the following the steps can be 

followed. Describe the different steps, and describe the percentage of addresses that could be 

geocoded in each step (if applicable): 

 

1. Manually inspect all records before geocoding and document for the to be geocoded 

records: 

-  the total number of records 

-  the number of records with (partly) missing address information, e.g. missing postal 

code or house number (for these addresses geocoding will not be possible if no additional 

information about the missing information will be available).  

2. For records for which an address or address component is missing, a detailed 

investigation should be performed to determine an appropriate and/or corrected address to 

be geocoded based on other information associated with the record. Commonly used 

sources include websites, phone books, utility records, and various vital records. More 

complete addresses result in a higher percentage of geocoded addresses. 

3. Carefully check all the addresses to ensure that their attributes (street address, postal 

code, house number, city name etc) are clearly separated and correctly formatted for 

automatic geocoding with the reference dataset. If necessary the address input data should 

be standardized. The way to standardize depends on the geocoding reference dataset. For 

example streetname, postal code, house number could be standardized, for example no 

capitals. 

4. Link in an automated way coordinates to each address based on the common attributes in 

both address input data and reference dataset, e.g. postal code, house number, city name. 

This can be done in SAS, or other statistical package, or Access for example. 

5. Document the number and percentage of addresses for which a geographical coordinate 

could be assigned. 

6. Document the number of non-geocoded addresses and the reasons why it was not possible 

to geocode (e.g. postal box, postal code / house number missing / standardized in a wrong 
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way / other / no clear reason). A manual search in the reference dataset could be 

conducted to document this.  

7. Repeat, if necessary, the steps 2-6 for the addresses that have not been geocoded yet. If 

available, more recent versions of the used reference dataset could be used for the 

addresses that could not be geocoded to check whether geographical coordinates are 

available in these more recent datasets. 

8. Document the final number and final percentage of addresses for which a geographical 

coordinate could and could not be assigned  

9. If possible, evaluate whether the addresses that could not be geocoded are clustered in the 

same area(s). This could for example be done based on the city name because that might 

be available for all records. If addresses in certain areas cannot be geocoded this may 

result in some selection effect.  

 

 

Considerations about geocoding 

 

• Because air pollution exposure cannot be estimated for records for which no geographical 

coordinates are available, the percentage of geocoded addresses should be as high as 

possible. Other studies have reported geocoding rates ranging from 20% to 100% 

depending on factors such as the number of problematic addresses, quality of addresses, 

and type of geocoding method (McElroy, Remington et al. 2003). Recent studies in The 

Netherlands typically had geocoding rates higher than 90 - 95%. Such geocoding rates 

were also common in other recent studies in other countries. 

• Records for which geographical coordinates could not be linked and for which therefore 

no air pollution exposure could be made will drop out of the epidemiological analyses. 

This may result in selection bias when for example non-geocodable records are clustered 

in the same area(s). It is therefore important that the percentage of geocoded addresses is 

as high as possible and that non-geocodable addresses are not clustered.  

• Error may occur where for less specific addresses (for example when the house number is 

missing) a coarser geocode is linked (for example centroid of a postal code area). This 

reduces the specificity of the address and may lead to situations where coordinates are 

linked that do not reflect ground truth, i.e. the actual position. This results in a mix of 

accuracy levels within a geocoded dataset. Therefore, do not link geographical 

coordinates to addresses with non-complete address information. 

• It has been shown that geocoding match rates may be lower for rural areas than for urban 

areas (Hay, Kypri et al. 2008). The reasons for this difference in accuracy include the 

 70



following: (1) rural areas tend to be less specific, with rural delivery routes and post 

office boxes sometimes used instead of street addresses; (2) there is more frequent use of 

unofficial or colloquial place names in rural areas; (3) when using the interpolation 

method there are larger interpolation errors due to longer street segments; and (4) 

roadway reference data for rural areas are less accurate than they are for urban areas. It is 

therefore important to try to document whether there are areas where the accuracy is less. 

• Furthermore, in rural areas parcels may be large and contain many structures, so that a 

residence location may be different from the centroid of the parcel. This illustrates also 

that preferably building centroids should be used. 

 

 

Validation 

 

Because large spatial variability of air pollution concentrations occurs within tens of meters 

from major roads geographical accuracy is important. As a general rule, spatial data must be 

much more accurate than the minimum distance used in spatial analysis for the results to be 

meaningful. Within ESCAPE the accuracy of the geocoding procedure should therefore be at 

least 5-10 meters.  

The accuracy of the geocoding procedure should be documented in two ways: (1) describe the 

claimed accuracy by the supplier of the reference dataset and (2) the accuracy of the 

geocoding procedure should also be evaluated by conducting our own validation. 

Our own validation will be conducted using the locations of ESCAPE monitoring sites. For 

all monitoring sites GPS readings have been made and the exact address is available when the 

site was located at a building. This exact address can then be geocoded using the procedures 

described above. The coordinates obtained by GPS readings and the coordinates obtained by 

the geocoding procedure can then be compared. Because the air pollution measurements and 

GPS readings will often be conducted at a drain pipe of the building, at a balcony or in the 

garden of a building, there will however be some difference between the coordinates using 

GPS readings and using geocoding procedures. The following methods will be used to 

conduct the validation: 

1. For each location geocoded by the reference dataset and the GPS, the distance between 

each pair of geocoded addresses and its corresponding GPS surveyed location can be 

calculated: di = [(xi – xi0)2 + (yi – yi0)2]1/2 

where di is positional error between the geocoded location of address i using the 

geocoding reference dataset and the GPS-surveyed location of address i; xi and yi are the 

x and y coordinates of the geocoded location of address i obtained from the geocoding 

reference dataset; xi0 and yi0 are the x and y coordinates of the GPS-surveyed location of 
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address i. Document the mean difference, range and standard deviation for the distance 

for all locations together, and separately for the different site types (regional background, 

urban background and traffic) to evaluate whether there are differences between urban 

and more rural areas. Further, document this also separately for homes and public 

building, e.g. hospitals, municipality health centers, schools etc, because the ground floor 

dimensions of such public buildings are mostly larger resulting in larger differences 

between GPS location of monitoring site and centroid of building for public buildings 

even when the geocoded address is correct.   

2. Further, we will evaluate the distance in the x- and y-direction separately. The distance in 

x-direction can be calculated by: d(x)i = xi – xi0, where d(x)i is the positional error in the 

x-direction between the geocoded location of address i and the GPS-surveyed location of 

address i. The distance in y-direction can be calculated in the same way: d(y)i = yi – yi0. 

Document the mean difference, range and standard deviation for the x- and y-direction 

separately, and also separately for the different site types, and also for homes and public 

buildings separately. Further, make a scatterplot by plotting for each location the 

difference in x-direction and the difference in y-direction. This gives insight whether the 

geocoded addresses differ in a systematical way from the GPS-coordinates. Scatterplots 

can be made for all addresses together, for different site types separately, and for homes 

and public buildings separately. 

3. Calculate for both the GPS coordinates and the geocoded addresses the distance to the 

nearest road, and calculate the difference between the distances to the nearest road for 

both coordinates. Document the mean difference, range and standard deviation for all 

sites together, for different site types separately, and for homes and public buildings 

separately. 

4. Finally, plot on a map for each monitoring site: 

-  the coordinate by the GPS reading 

-  the coordinate by geocoding the address of the monitoring site 

-  the ground floor dimensions of houses and buildings 

-  the “real” location of the monitoring site. Because the exact location is known this 

location can also be plotted using information from the ground floor dimensions of the 

building and local knowledge 

-  the digital road network which was used to calculate distances to the nearest road. 

Such a map gives insight in the potential different positional errors and will for example 

look like:  
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With: 

C1 = ‘real’ location 

C2 = coordinate from GPS reading 

C3 = coordinate from geocoding the address 

Dif = Distance between coordinate from GPS reading and coordinate from geocoding the 

address 

Dif x = Distance in the x-direction between coordinate from GPS reading and coordinate from 

geocoding the address 

Dif y = Distance in the y-direction between coordinate from GPS reading and coordinate from 

geocoding the address 

DistC2 = Distance between coordinate from GPS reading and nearest road 

DistC3 = Distance between coordinate from geocoding the address and nearest road 
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Appendix V: ESCAPE air pollution and GIS transfer: explanation of 

variables 

 

ESCAPE air pollution and GIS data transfer:explanation of 
variables 
 
 
Utrecht 
Monday, May 31, 2010 
Version 1 
g.hoek@uu.nl 
 
 
 
 
For documentation purposes IRAS will maintain a central database with the final air 
pollution and GIS data for the monitoring sites. Four sets of files will be prepared for 
each study area: 

1. The standard Excel files including all samples, calculations and results of 
QA/QC  

2. Individual measurement results from all monitoring sites (3 per site).  
3. Annual average concentrations for all monitoring sites, used in land use 

regression modeling 
4. Predictor data for all monitoring sites. This includes the GIS data and the 

monitoring site characterization (appendix 2 from the study manual). 
 
 
Files will be transferred to IRAS (g.hoek@uu.nl) in Excel files. The first level is the 
files used for the calculations of NO2 and PM concentrations. The final results will be 
in the file escape_airgis.xls, for which this documents provides guidelines. 
 
 
Excel files with calculations 
Please send the final datafiles with a mail stating that this is the final data. Files have 
been sent back and forth with comments several times, so we want to avoid confusion.  
 
 
Individual data  
The individual air pollution measurements are stored in the worksheet individual data. 
An explanation of the variable names follows below. The database contains only the 
successful measurements used in the calculation of annual averages. Measurements 
failing the SOP criteria have been excluded by the centers. Blanks and duplicates are 
also not included. NOX-only areas can leave all data referring to PM empty. For them 
sampling session typically is 1, 2 or 3. Elemental composition data will be entered in a 
separate sheet (elemental data), as we do not have the data yet and do not know yet 
which elements will be measured with adequate quality.  
 
 

 75

mailto:g.hoek@uu.nl
mailto:g.hoek@uu.nl


Variable Explanation 
COUNTRY Country 
STUDYAREA Name of the study area as in ESCAPE study manual 
TOWN Town (city) in which the site is located 
SITENAME Street address, including number 
SITEID Site identification number given by each center 
STARTDATE_PM Start date of the PM sample (mm/dd/yy) 
STARTDATE_NOX Start date of the NOX sample (mm/dd/yy) 
SESSION_PM Sampling session PM, identifying sampling period (1 to ~ 12 for PM-NOX) 
SESSION_NOX Sampling session NOX, identifying sampling period (1 to ~ 12 for PM-NOX) 
PM25 14-day average concentration PM2.5 (μg/m3) 
PM25ABS 14-day average absorbance PM2.5 (10-5  m-1) 
PM10 14-day average concentration PM10 (μg/m3) 
PM10ABS 14-day average absorbance PM10 (10-5  m-1) 
NO2 14-day average concentration NO2 (μg/m3) 
NOx 14-day average concentration NOx (μg/m3) 
NO 14-day average concentration NO (μg/m3) 
Comment Comment such as ‘imputed’ 
 
 
Annual average concentrations 
 
These data are included in the worksheet ‘annual average’. All unadjusted and adjusted 
averages are included here. Data from the ESCAPE continuous measurement site are included 
as well. This is intended for descriptive purposes only, not for use in the regression modeling 
part. A file for elemental composition will be developed later. The coarse particle 
concentration is added here by subtracting PM25 from PM10. 
 
Variable Explanation 
COUNTRY Country 
STUDYAREA Name of the study area as in ESCAPE study manual 
TOWN Town (city) in which the site is located 
SITEID Site identification number given by each center 
SITETYPE RB=regional background, UB=urban background, T=traffic 
PM25UNADJ Annual average concentration PM2.5 (μg/m3) (unadjusted) 
PM25 Annual average concentration PM2.5 (μg/m3) (adjusted) 
PM25ABSUNADJ Annual average absorbance PM2.5 (10-5  m-1) (unadjusted) 
PM25ABS Annual average absorbance PM2.5 (10-5  m-1) (adjusted) 
PM10UNADJ Annual average concentration PM10 (μg/m3) (unadjusted) 
PM10 Annual average concentration PM10 (μg/m3) (adjusted) 
PM10ABSUNADJ Annual average absorbance PM10 (10-5  m-1) (unadjusted) 
PM10ABS Annual average absorbance PM10 (10-5  m-1) (adjusted) 
COARSE Annual average concentration coarse particles (μg/m3): PM10 – PM25 (adjusted)
NO2UNADJ Annual average concentration NO2 (μg/m3) (unadjusted) 
NO2 Annual average concentration NO2 (μg/m3) (adjusted) 
NOXUNADJ Annual average concentration NOX (μg/m3) (unadjusted) 
NOX Annual average concentration NOX (μg/m3) (adjusted) 
NOUNADJ Annual average concentration NO (μg/m3) (unadjusted) 
NOD Annual average concentration NO (μg/m3) (adjusted) 
Comments  

 76



GIS data 
 
The files only contain basic data; thus data that can be calculated from the basic data are 
not included (e.g. GIS data from buffer 5000 – 1000 meter is not included since it can 
be calculated from the data from the 5000 and 1000 meter buffer). The common data 
are as described in Table 4 of the exposure assessment manual (version July 2010). If 
additional local data are obtained and used in modeling, add these to the file.  
 
Name variable1 Predictor variable Unit Buffer size  
STUDYAREA Name study area ESCAPE manual   
SITEID Site identification number given by each center   
XCOORD, YCOORD Coordinate variables m NA 
HDRES High density residential land  m2 100,  300, 500, 

1000, 5000 
LDRES Low density residential land  m2 100,  300, 500, 

1000, 5000 
INDUSTRY Industry  m2 100,  300, 500, 

1000, 5000 
PORT Port  m2 100,  300, 500, 

1000, 5000 
URBGREEN Urban green  m2 100,  300, 500, 

1000, 5000 
NATURAL Semi-natural and forested areas  m2 100,  300, 500, 

1000, 5000 
POP 
 

Number of inhabitants 
 

N(umber) 
 

100,  300, 500, 
1000, 5000 

HHOLD Number of households N(umber) 100,  300, 500, 
1000, 5000 

SQRALT Square root of altitude m NA 
TRAFNEAR 
 

Traffic intensity on nearest road Veh.day-1 NA 

DISTINVNEAR1 
DISTINVNEAR2 

Distance to the nearest road m-1, m-2 NA 

INTINVDIST 
INTINVDIST2 

Product of traffic intensity on nearest road and 
inverse of distance to the nearest road and distance 
squared 

Veh.day-1m-1 

Veh.day-1m-2 
 

TRAFMAJOR 
 

Traffic intensity on nearest major road Veh.day-1 NA 

DISTINVMAJOR1 
DISTINVMAJOR2 

Distance to the nearest major road m-1, m-2 NA 

INTMAJORINVDIST 
INTMAJORINVDIST2 

Product of traffic intensity on nearest major road 
and inverse of distance to the nearest major road 
and distance squared 

Veh.day-1m-1 

Veh.day-1m-2 
 

TRAFMAJORLOAD Total traffic load of major roads in a buffer (sum of 
(traffic intensity * length of all segments)) 

Veh.day-1m 

 
25, 50, 100,  
300, 500, 1000 

TRAFLOAD Total traffic load of all roads in a buffer (sum of 
(traffic intensity * length of all segments)) 

Veh.day-1m 

 
25, 50, 100,  
300, 500, 1000 

HEAVYTRAFNEAR* 
 

Heavy-duty traffic intensity on nearest road Veh.day-1 NA 

HEAVYINTINVDIST 
HEAVYINTINVDIST2 

Product of Heavy-duty traffic intensity on nearest 
road and inverse of distance to the nearest road and 
distance squared 

Veh.day-1m-1 

Veh.day-1m-2 
 

HEAVYTRAFMAJOR 
 

Heavy-duty traffic intensity on nearest major road Veh.day-1 NA 

HEAVYTRAFMAJORLOAD Total heavy-duty traffic load of major roads in a 
buffer (sum of (heavy-duty traffic intensity * length 
of all segments)) 

Veh.day-1m 

 
25, 50, 100,  
300, 500, 1000 

HEAVYTRAFLOAD Total heavy-duty traffic load of all roads in a buffer Veh.day-1m 25, 50, 100,  
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(sum of (heavy-duty traffic intensity * length of all 
segments)) 

 300, 500, 1000 

ROADLENGTH Road length of all roads in a buffer m 25, 50, 100,  
300, 500, 1000 

MAJORROADLENGTH Road length of major roads in a buffer m 25, 50, 100,  
300, 500, 1000 

DISTINVNEARC1 
DISTINVNEARC2 

Distance to the nearest road m-1, m-2 NA 

DISTINVMAJORC1 
DISTINVMAJORC2 

Distance to the nearest major road m-1, m-2 NA 

CANYON Aspect ratio (sum height buildings both side of road 
divided by road width)  

m/m NA 

1  Variable name: Combining name and buffer size, for HDRES:  HDRES_100, HDRES_300, 
HDRES_500,HDRES_1000, HDRES_5000 
 
 
Site classification 
This information is taken from the site characterization form, described in appendix 2 of the 
ESCAPE study manual. To some of the variables we added “sc” to distinguish the site 
characterization data from the GIS data.  
 

Variable  Explanation 

STUDYAREA Study area 
SITEID  Site code 
SITENAME Site address (street + street number) 
XCOORD X-coordinate1 

YCOORD y-coordinate1  

LIGHTVEHFLOW Light vehicles flow on the nearest street (cars day-1) 
HEAVYVEHFLOW Heavy vehicles flow on the nearest street (cars day-1) 
DISTNEAR_SC Distance to nearest street (m)  
DISTNEARMAJOR_SC Distance to nearest major street (m)  
DISTINT_SC Distance to nearest intersection (m) 
DISTLIGHT_SC Distance to nearest traffic light (m)  
WIDTH Width of the nearest street (m) 

HEIGHT Height of building of which home is part (m) 

STREETCONFIG 

1. Largely uninterrupted rows of homes on both sides of the street 
2. Largely uninterrupted rows of homes on the study home side of 

the street, but not the other side 
3. Largely uninterrupted rows of homes on the other side of the 

street, but not on the study home side 
4. On both sides of the road interrupted rows of homes 

BUILDINGINT Buildings uninterrupted for at least 25 meter on each side (yes / no) 
FLOORSAMPLE Floor at which outdoor measurements are made (0, 1, 2, etc) 
SAMPHEIGHT Sampling height for outdoor measurements (m) 
SAMPSIDE Sampling site in backyard (B), streetside (S) or rooftop (R) 
PARKING Is there a large parking lot within 100 meter? Yes or no 

INDUSTRY Is there a small industrial plant (e.g. garage, petrol station) within 
100 meter? Yes or no 

 
1 Indicate coordinate system used 
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